删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Pell方程组x2-(c2-1)y2=y2
本站小编 Free考研考试/2021-12-27

Pell方程组x2-(c2-1)y2=y2-2p1p2p3z2=1的公解 管训贵泰州学院数理学院 泰州 225300 On the Common Solutions of Pell Equations x2-(c2-1)y2=y2-2p1p2p3z2=1 Xun Gui GUANSchool of Mathematics and Physics, Taizhou University, Taizhou 225300, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(416 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要p1p2p3为不同的奇素数,c > 1是整数.给出了Pell方程组x2-(c2-1)y2=y2-2p1p2p3z2=1的所有非负整数解(x,y,z),从而推广了Keskin(2017)和Cipu(2018)等人的结果.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2019-05-24
MR (2010):O156
基金资助:国家自然科学基金资助项目(11471144);江苏省自然科学基金资助项目(BK20171318);云南省教育厅科学研究基金(2019J1182);泰州学院教博基金项目(TZXY2018JBJJ002)
作者简介: 管训贵,E-mail:tzszgxg@126.com
引用本文:
管训贵. Pell方程组x2-(c2-1)y2=y2-2p1p2p3z2=1的公解[J]. 数学学报, 2020, 63(2): 157-170. Xun Gui GUAN. On the Common Solutions of Pell Equations x2-(c2-1)y2=y2-2p1p2p3z2=1. Acta Mathematica Sinica, Chinese Series, 2020, 63(2): 157-170.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2020/V63/I2/157


[1] Bennett M. A., On the number of solutions of simultaneous Pell equations, J. Reine Angew. Math., 1998, 498:173-199.
[2] Bosma W., Cannon J., Playoust C., The Magma algebra system, I:the user language, J. Symb. Comput., 1997, 24(3-4):235-265.
[3] Cao Z. F., Complete solution of the diophantine equation A2x4-By2=1 and some related problems, J. of Harbin Institute of Technology (New Series), 2001, 8(2):108-110.
[4] Cao Z. F., Diophantine Equation and Its Applications (in Chinese), Shanghai Jiaotong University Press, Shanghai, 2000.
[5] Cipu M., Pairs of Pell equations having at most one common solution in positive integers, An. St. Univ. Ovidius Constant a Ser. Math., 2007, 15(1):55-66.
[6] Cipu M., Explicit formula for the solution of simultaneous Pell equations x2-(a2-1)y2=1, y2-bz2=1, Proceedings of the American Math. Soc., 2018, 146(3):983-992.
[7] Dong X. L., Shiu W. C., Chu C. I., et al., The simultaneous Pell equations y2 -Dz2=1 and x2-2Dz2=1, Acta Arith., 2007, 126(2):115-123.
[8] Guan X. G., On positive integer solutions to the simultaneous Pell equations y2 -Dz2=1 and x2 -2Dz2=1(in Chinese), J. Central China Normal University (Nat. Sci.), 2019, 53(2):171-180.
[9] He B., On the number of solutions of simultaneous Pell equations x2-ay2=1 and y2-bz2=1, Acta Mathematica Sinica, Chinese Series, 2008, 51(4):721-726.
[10] Keskin R., Karaath O., Siar Z., et al., On the determination of solutions of simultaneous Pell equationsx2-(a2-1)y2=y2-pz2=1, Period. Math. Hungar., 2017, 75(2):336-344.
[11] Ljunggren W., Litt om simultane Pellske ligninger, Norsk Mat. Tidsskr., 1941, 2:132-138.
[12] Mignotte M., Pethö A., Sur les carrés dans certaines suites de Lucas, J. Théor. Nombers Bordeaux, 1993, 5(2):333-341.
[13] Sun Q., Yuan P. Z., On the Diophantine equation x4 -Dy2=1(in Chinese), J. Sichuan University (Natural Science Edition), 1997, 34(3):265-268.
[14] Togbe A., Voutier P. M., Walsh P. G., Solving a family of thue equations with an application to the equation x2-Dy4=1, Acta Arith., 2005, 120(1):39-58.
[15] Walsh G., A note on a theorem of Ljunggren and the diophantine equations x2-kxy2 + y4=1 or 4, Arch. Math., 1999, 73(2):119-125.
[16] Yuan P. Z., Simultaneous Pell equations, Acta Arith., 2004, 115:215-221.
[17] Yuan P. Z., On the number of solutions of x2-4m(m +1)y2=y2-bz2=1, Proc. Amer. Math. Soc., 2004, 132:1561-1566.

[1]王海蒙, 周璇, 赵玉娟. 四元Heisenberg群上次拉普拉斯算子的m幂次的基本解[J]. 数学学报, 2020, 63(3): 229-244.
[2]李伟平, 戈文旭, 王天泽. 素变量混合幂丢番图逼近[J]. 数学学报, 2019, 62(1): 49-58.
[3]李伟平, 戈文旭, 王天泽. 幂次为2,3,4,5的素变量非线性型的整数部分[J]. 数学学报, 2016, 59(5): 585-594.
[4]孙学功. Terence Tao的一个问题[J]. 数学学报, 2016, 59(4): 527-534.
[5]李伟平, 赵峰, 王天泽. 一个非线性方程的小素数解[J]. Acta Mathematica Sinica, English Series, 2015, 58(5): 739-764.
[6]高文华, 江寅生. 某些抛物型算子在加权Lp空间和Morrey空间上的估计[J]. Acta Mathematica Sinica, English Series, 2013, 56(5): 699-710.
[7]李伟平, 王天泽. 素数k次方和的非线性型的整数部分[J]. Acta Mathematica Sinica, English Series, 2013, 56(4): 605-612.
[8]胡甦, 于宗文. 二次函数域理想类数问题的一个注记[J]. Acta Mathematica Sinica, English Series, 2010, 53(1): 135-140.
[9]吴华明. 椭圆曲线y2=x3+27x-62的整数点[J]. Acta Mathematica Sinica, English Series, 2010, 53(1): 205-208.
[10]钱方生;. 有限群亏零块的存在性[J]. Acta Mathematica Sinica, English Series, 2009, (04): 39-42.
[11]董玲玲;翟文广;. 关于{x/p}的分布[J]. Acta Mathematica Sinica, English Series, 2009, (03): 155-164.
[12]何波;. 联立Pell方程组x~2-ay~2=1和y~2-bz~2=1的解数[J]. Acta Mathematica Sinica, English Series, 2008, 51(4): 721-726.
[13]屈爱芳;. Tricomi算子的基本解[J]. Acta Mathematica Sinica, English Series, 2008, 51(4): 625-632.
[14]秦惠增;商妮娜;. 一类双曲型方程的Huygens原理[J]. Acta Mathematica Sinica, English Series, 2006, 49(4): 797-802.
[15]孙学功;陈永高;. Romanoff定理的定量形式[J]. Acta Mathematica Sinica, English Series, 2006, 49(3): 577-582.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23575
相关话题/数学 空间 基金 数理 方程组