删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Suzuki-Ree群的自同构群的阶分量刻画

本站小编 Free考研考试/2021-12-27

Suzuki-Ree群的自同构群的阶分量刻画 陈彦恒, 贾松芳重庆三峡学院数学与统计学院 重庆 404100 Automorphism Groups of Suzuki-Ree Groups Can Be Characterized by Their Order Components Yan Heng CHEN, Song Fang JIASchool of Mathematics and Statistics, Chongqing Three Gorges University, Chongqing 400410, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(386 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要在《数学学报》2013年第56卷第4期中,“Suzuki-Ree群的自同构群的一个新刻画”一文证明了Aut(2F4q)),q=2f和Aut(2G2q)),q=3f,可由其阶分量刻画,其中f=3ss为正整数.本文证明了Aut(2B2q)),q=2f和Aut(2G2q)),q=3f,也可由其阶分量刻画,其中f为奇素数.结合二者得到结论:Suzuki-Ree单群的所有的素图不连通的自同构群皆可由其阶分量刻画.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2018-07-20
MR (2010):152.1
基金资助:重庆市教委科研项目(KJ1710254);重庆三峡学院重大培育项目(18ZDPY07)及重点项目(14ZD16)
作者简介: 陈彦恒,E-mail:math_yan@126.com;贾松芳,E-mail:jiasongfang@163.com
引用本文:
陈彦恒, 贾松芳. Suzuki-Ree群的自同构群的阶分量刻画[J]. 数学学报, 2019, 62(4): 641-646. Yan Heng CHEN, Song Fang JIA. Automorphism Groups of Suzuki-Ree Groups Can Be Characterized by Their Order Components. Acta Mathematica Sinica, Chinese Series, 2019, 62(4): 641-646.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2019/V62/I4/641


[1] Iiyori N., Yamaki H., Prime graph components of the simple groups of Lie type over the field of even characteristic, J. Algebra, 1993, 155(2):335-343.
[2] Lucido M. S., Prime graph components of finite almost simple groups, Rend. Sem. Univ. Padova, 1999, 102:1-22.
[3] Lucido M. S., Addendum to "Prime graph components of finite almost simple groups", Rend. Sem. Univ. Padova, 2002, 107:189-190.
[4] Vasil'ev A. V., On recognition of all finite nonabelian simple groups With orders having prime divisors at most 13, Math. Sb., 2005, 46(2):246-253.
[5] Williams J. S., Prime graph components of finite groups, J. Algebra, 1981, 69:487-513.
[6] Xiao F. F., Cao H. P., Chen G. Y., A new characterization of the automorphism groups of Suzuki-Ree groups, Acta Math. Sin., Chin. Ser., 2013, 56(4):545-552.

[1]李立莉. 单群2G2(32n+1)的拟刻画[J]. Acta Mathematica Sinica, English Series, 2015, 58(3): 359-364.
[2]张秀强, 刘文德. 非单WS型李超代数的滤过和分类[J]. Acta Mathematica Sinica, English Series, 2015, 58(2): 301-308.
[3]王松. 仿射Nappi-Witten代数Ĥ4的顶点算子代数的自同构群[J]. Acta Mathematica Sinica, English Series, 2014, 57(2): 331-338.
[4]肖芳芳, 曹洪平, 陈贵云. Suzuki-Ree群的自同构群的一个新刻画[J]. Acta Mathematica Sinica, English Series, 2013, 56(4): 545-552.
[5]李立莉. 单群G2(3n)的拟刻画[J]. Acta Mathematica Sinica, English Series, 2013, 56(2): 257-262.
[6]王玉雷, 刘合国. 广义超特殊p-群的自同构群(II)[J]. Acta Mathematica Sinica, English Series, 2011, 54(4): 651-658.
[7]海进科, 李正兴. 有限ATI-群的类保持Coleman自同构[J]. Acta Mathematica Sinica, English Series, 2010, 53(5): 891-896.
[8]刘合国, 张继平,廖军. 无限亚循环群的自同构群[J]. Acta Mathematica Sinica, English Series, 2009, 52(6): 1047-1054.
[9]海进科Wang Yulei. 具有一个T.I. Sylow 2-子群的有限群的类保持Coleman自同构[J]. Acta Mathematica Sinica, English Series, 2008, 51(6): 1115-111.
[10]郑兆娟;谭绍滨;. 一类量子环面李代数的自同构群[J]. Acta Mathematica Sinica, English Series, 2007, 50(3): 591-600.
[11]刘文德;张永正. 素特征域上广义Witt李超代数的自同构群[J]. Acta Mathematica Sinica, English Series, 2004, 47(6): 1123-113.
[12]杜妮;李世荣. 具有4pq阶自同构群的有限群[J]. Acta Mathematica Sinica, English Series, 2004, 47(1): 181-188.
[13]周胜林. Ree群~2G_2(q)与2-(v,k,l)区组设计(Ⅱ)[J]. Acta Mathematica Sinica, English Series, 2003, 46(4): 823-828.
[14]殷慰萍;管冰辛. 第四类华罗庚域的Bergman核函数[J]. Acta Mathematica Sinica, English Series, 2003, 46(1): 85-94.
[15]严从荃;孙顺华. C(X)A上的自同构群[J]. Acta Mathematica Sinica, English Series, 2000, 43(4): 763-768.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23454
相关话题/代数 数学 重庆三峡学院 自同构 统计学院