删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

相对整体维数有限的扩张

本站小编 Free考研考试/2021-12-27

相对整体维数有限的扩张 郭述锋1,21. 桂林航天工业学院理学院 桂林 541004;
2. 首都师范大学数学科学学院 北京 100048 Extensions with Finite Relative Global Dimension Shu Feng GUO1,21. College of Science, Guilin University of Aerospace Technology, Guilin 541004, P. R. China;
2. School of Mathematical Sciences, Capital Normal University, Beijing 100048, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(512 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要代数的扩张是指两个代数之间保持单位元的同态映射.设fBA是代数的扩张,扩张f的相对整体维数是指所有A-模的相对投射维数的上确界.我们给出了扩张的相对整体维数有限的一个充分必要条件,作为应用,还获得了Hochschild的文[Relative homological algebra,Trans.Am.Math.Soc.,1956,82:246–269]中一个结果的简洁证明.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2018-04-15
MR (2010):O154.2
基金资助:国家自然科学基金资助项目(11331006);广西自然科学基金项目(2018GXNSFAA138191);桂林航天工业学院博士基金项目(20180601-20200601)
作者简介: 郭述锋,E-mail:guoshufeng132@126.com
引用本文:
郭述锋. 相对整体维数有限的扩张[J]. 数学学报, 2019, 62(2): 191-200. Shu Feng GUO. Extensions with Finite Relative Global Dimension. Acta Mathematica Sinica, Chinese Series, 2019, 62(2): 191-200.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2019/V62/I2/191


[1] Auslander M., Reiten I., Smalø S., Representation Theory of Artin Algebras, Cambridge University Press, Cambridge, 1995.
[2] Auslander M., Solberg Ø., Relative homology and representation theory Ⅱ, Relative cotilting theory, Comm. Algebra, 1993, 21: 3033–3079.
[3] Farnsteiner R., On the cohomology of ring extensions, Adv. Math., 1991, 87: 42–70.
[4] Green E. L., A criterion for relative global dimension zero with applications to graded rings, J. Algebra, 1975, 34: 130–135.
[5] Guo S. F., Relative global dimensions of extensions, Comm. Algebra, 2018, 46: 2089–2108.
[6] Hirata K., On relative homological algebra of Frobenius extensions, Nagoya Math. J., 1959, 15: 17–28.
[7] Hirata K., Sugano K., On semisimple extensions and separable extensions over non-commutative rings, J. Math. Soc. Japan, 1966, 18: 360–373.
[8] Hochschild G., Relative homological algebra, Trans. Am. Math. Soc., 1956, 82: 246–269.
[9] Nuss P., Noncommutative descent and non-abelian cohomology, K-Theory, 1997, 12: 23–74.
[10] Reiten I., Riedtmann Ch., Skew group algebras in the representation theory of artin algeras, J. Algebra, 1985, 92: 224–282.
[11] Thévenaz J., Relative projective covers and almost split sequences, Comm. Algebra, 1985, 13: 1535–1554.
[12] Xi C. C., On the finitistic dimension conjecture, I: related to representation-finite algebras, J. Pure Appl. Algebra, 2004, 193: 287–305; Erratum to “On the finitistic dimension conjecture, I: related to representationfinite algebras, J. Pure Appl. Algebra, 2004, 193: 287–305”, J. Pure Appl. Algebra, 2005, 202: 325–328.
[13] Xi C. C., On the finitistic dimension conjecture, Ⅱ: related to finite global dimension, Adv. Math., 2006, 201: 116–142.
[14] Xi C. C., Xu D. M., The finitistic dimension conjecture and relatively projective modules, Comm. Contemp. Math., 2013, 15: 1–27.

[1]汪军鹏, 狄振兴. Gorenstein正则环、奇点范畴和Ding模[J]. 数学学报, 2019, 62(2): 331-344.
[2]毛雪峰, 何继位. 一类特殊的Koszul Calabi-Yau DG代数[J]. 数学学报, 2017, 60(3): 475-504.
[3]张海诚. m-循环复形范畴的Bridgeland--Hall代数的余代数结构[J]. Acta Mathematica Sinica, English Series, 2015, 58(6): 881-896.
[4]万前红, 郑立景, 郭晋云. 斜群代数与平凡扩张的表示维数[J]. Acta Mathematica Sinica, English Series, 2015, 58(3): 463-468.
[5]罗秀花, 居腾霞, 吴美云. rep(A3, I, A)中的Gorenstein投射模[J]. Acta Mathematica Sinica, English Series, 2015, 58(1): 115-124.
[6]李宜阳, 舒斌, 姚裕丰. sl(3, k)正则幂零表示投射模的Lowey序列[J]. Acta Mathematica Sinica, English Series, 2014, 57(5): 981-992.
[7]周俊超, 徐运阁, 陈媛. 一类自入射Koszul特殊双列代数的Hochschild同调群[J]. Acta Mathematica Sinica, English Series, 2012, 55(4): 627-640.
[8]曾月迪, 陈建龙. 内射余分解类与投射分解类[J]. Acta Mathematica Sinica, English Series, 2012, 55(1): 41-54.
[9]林增强, 王敏雄. 模范畴Recollement的Koenig定理[J]. Acta Mathematica Sinica, English Series, 2011, 54(3): 461-466.
[10]赵良, 周毅强. n-强W-Gorenstein模[J]. 数学学报, 2017, 60(2): 279-296.
[11]徐运阁, 赵体伟, 吴迪. 一个Cluster-Tilted代数的Hochschild上同调环[J]. 数学学报, 2016, 59(4): 505-518.
[12]梁力, 杨刚. 复形的#-内射包络的存在性[J]. 数学学报, 2019, 62(3): 391-396.
[13]任伟, 张春霞. 环扩张下的Gorenstein平坦模型结构[J]. 数学学报, 2017, 60(5): 859-864.
[14]毛雪峰, 谢建峰. 同调光滑连通上链DG代数的一个注记[J]. 数学学报, 2018, 61(5): 715-728.
[15]李兆晖, 徐运阁, 汪任. 一个自入射Koszul代数的Hochschild同调与循环同调[J]. 数学学报, 2018, 61(1): 97-106.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23367
相关话题/代数 数学 航天 结构 北京