删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

一个充分下降的谱三项共轭梯度法

本站小编 Free考研考试/2021-12-27

一个充分下降的谱三项共轭梯度法 简金宝1, 刘鹏杰2, 江羡珍11. 广西民族大学数学与物理学院, 南宁 530006;
2. 广西大学数学与信息科学学院, 南宁 530004 A Spectral Three-term Conjugate Gradient Method with Sufficient Descent Property JIAN Jinbao1, LIU Pengjie2, JIANG Xianzhen11. College of Mathematics and Physics, Guangxi University for Nationalities, Nanning 530006, China;
2. College of Mathematics and Information Science, Guangxi University, Nanning 530004, China
摘要
图/表
参考文献
相关文章(11)
点击分布统计
下载分布统计
-->

全文: PDF(432 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要谱三项共轭梯度法作为共轭梯度法的一种重要推广,在求解大规模无约束优化问题方面具有较好的理论特征与数值效果.本文运用强Wolfe非精确线搜索条件设计产生一个新的谱参数,结合修正Polak-Ribiére-Polyak共轭参数计算公式建立了一个Polak-Ribiére-Polyak型谱三项共轭梯度算法.新算法无论采用何种线搜索条件求步长,每步迭代均满足充分下降条件.在常规假设条件下,采用强Wolfe非精确线搜索条件产生步长,证明了算法的强收敛性.最后,对新算法与现有数值效果较好的共轭梯度法进行比对试验,并采用性能图对数值结果进行直观展示,结果表明新算法是有效的.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2019-12-10
PACS:O221.2
基金资助:国家自然科学基金(11771383),广西自然科学基金(2016GXNSFAA380028,2018GXNSFFA281007)和广西民族大学科研基金(2018KJQD02)资助项目.

引用本文:
简金宝, 刘鹏杰, 江羡珍. 一个充分下降的谱三项共轭梯度法[J]. 应用数学学报, 2020, 43(6): 1000-1012. JIAN Jinbao, LIU Pengjie, JIANG Xianzhen. A Spectral Three-term Conjugate Gradient Method with Sufficient Descent Property. Acta Mathematicae Applicatae Sinica, 2020, 43(6): 1000-1012.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2020/V43/I6/1000


[1] Hestenes M R, Stiefel E. Method of conjugate gradient for solving linear equations. Journal of Research of National Bureau of Standards, 1952, 49:409-436
[2] Fletcher R, Reeves C. Function minimization by conjugate gradients. Computer Journal, 1964, 7(2):149-154
[3] Polak E, Ribiére G. Note surla convergence de directions conjugées. Revue Francaise Informat Recherche Operationelle 3e Anneé, 1969, 16(3):35-43
[4] Polyak B T. The conjugate gradient method in extreme problems. USSR Computational Mathematics and Mathematical Physics, 1969, 9:94-112
[5] Dai Y H, Yuan Y X. A nonlinear conjugate gradient method with a strong global convergence property. SIAM Journal on Optimization, 1999, 10(1):177-182
[6] Hager W W, Zhang H. A new conjugate gradient method with guaranteed descent and an efficient line search. SIAM Journal on Optimization, 2005, 16:170-192
[7] Hager W W, Zhang H. A survey of nonlinear conjugate gradient methods. Pacific journal of Optimization, 2006, 2(1):35-58
[8] Jian J, Han L, Jiang X. A hybrid conjugate gradient method with descent property for unconstrained optimization. Applied Mathematical Modelling, 2015, 39(3-4):1281-1290
[9] Dai Y, Yuan Y. An efficient hybrid conjugate gradient method for unconstrained optimization. Annals of Operations Research, 2001, 103(1-4):33-47
[10] Tang C, Li S, Cui Z. Least-squares-based three-term conjugate gradient methods. Journal of Inequalities and Applications, 2020, 2020(1):27
[11] 江羡珍, 简金宝. 一个自调节Polak-Ribiere-Polyak型共轭梯度法. 应用数学学报, 2017, 40(03):449-460 (Jiang X, Jian J. A self-adjusting Polak-Ribiere-Polyak type conjugate gradient method. Acta Mathematics Applicatae Sinica, 2017, 40(03):449-460)
[12] Liu J K, Feng Y M, Zou L M. A spectral conjugate gradient method for solving large-scale unconstrained optimization. Computers and Mathematics with Applications, 2019, 77(3):731-739
[13] Jian J, Chen Q, Jiang X, Zeng Y, Yin J. A new spectral conjugate gradient method for large-scale unconstrained optimization. Optimization Methods and Software, 2017, 32(3):503-515
[14] Deng S, Wan Z, Chen X. An improved spectral conjugate gradient algorithm for nonconvex unconstrained optimization problems. Journal of Optimization Theory and Applications, 2013, 157(3):820-842
[15] Babaie-Kafaki S. A modified scaled memoryless BFGS preconditioned conjugate gradient method for unconstrained optimization. 4OR-A Quarterly Journal of Operations Research, 2013, 11(4):361-374
[16] Kou C X, Dai Y H. A modified self-scaling memoryless Broyden-Fletcher-Goldfarb-Shanno method for unconstrained optimization. Journal of Optimization Theory and Applications, 2015, 165(1):209-224
[17] Dai Y H, Kou C X. A nonlinear conjugate gradient algorithm with an optimal property and an improved Wolfe line search. SIAM Journal on Optimization, 2013, 23(1):296-320
[18] 喻高航, 关履泰. 具有充分下降性的修正PRP算法及其收敛性. 中山大学学报 (自然科学版), 2006, 4:11-14+18 (Yu G H, Guan L T. Modified PRP Methods with sufficient desent property and their convergence properties. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2006, 4:11-14+18)
[19] Zhang L, Zhou W, Li D H. A descent modified Polak-Ribiére-Polyak conjugate gradient method and its global convergence. IMA Journal of Numerical Analysis, 2006, 26(4):629-640
[20] Li X, Shi J, Dong X, Yu J. A new conjugate gradient method based on Quasi-Newton equation for unconstrained optimization. Journal of Computational and Applied Mathematics, 2019, 350:372-379
[21] Jiang X, Jian J. Improved Fletcher-Reeves and Dai-Yuan conjugate gradient methods with the strong Wolfe line search. Journal of Computational and Applied Mathematics, 2019, 348:525-534
[22] Beale E M L. A derivative of conjugate gradients. In:Lootsma F.A.(ed), Numerical Methods for Nonlinear Optimization. London:Academic Press, 1972, 39-43
[23] Zoutendijk G. Nonlinear programming computational methods. In:Abadie J.(ed), Integer and Nonlinear Programming. Amsterdam:North-Holland, 1970
[24] Gould N I M, Orban D, Toint P L. CUTEr and SifDec:a constrained and unconstrained testing environment, revisited. ACM Transactions on Mathematical Software (TOMS), 2003, 29(4):373-394
[25] Moré J J, Garbow B S, Hillstrome K E. Testing unconstrained optimization software. ACM Transactions on Mathematical Software, 1981, 7:17-41
[26] Andrei N. An unconstrained optimization test functions collection. Advanced Modeling and Optimization, 2008, 10(1):147-161
[27] Dolan E D, Moré J J. Benchmarking optimization software with performance profiles. Mathematical Programming, 2002, 91(2):201-213

[1]李智群, 张爽, 黎勇. 一个具有充分下降性的混合共轭梯度法[J]. 应用数学学报, 2020, 43(3): 494-501.
[2]刘金魁, 张春涛. 三项修正LS共轭梯度方法及其收敛性研究[J]. 应用数学学报, 2017, 40(6): 862-873.
[3]江羡珍, 简金宝. 一个自调节Polak-Ribière-Polyak型共轭梯度法[J]. 应用数学学报, 2017, 40(3): 449-460.
[4]马国栋, 简金宝, 江羡珍. 一个具有下降性的改进Fletcher-Reeves共轭梯度法[J]. 应用数学学报, 2015, 38(1): 89-97.
[5]闫晖, 陈兰平. 一个新的具有充分下降性的混合共轭梯度算法[J]. 应用数学学报(英文版), 2011, 34(4): 634-643.
[6]党亚峥, 高岩, 杨建芳. 凸可行问题的一种强收敛算法[J]. 应用数学学报(英文版), 2011, 34(2): 303-316.
[7]汤京永, 贺国平, 董丽. 一类新的多步曲线搜索下的超记忆梯度法[J]. 应用数学学报(英文版), 2011, 34(2): 353-362.
[8]党亚峥, 高岩, 杨建芳. 凸可行问题的一种强收敛算法[J]. 应用数学学报(英文版), 2011, 34(1): 303-312.
[9]汤京永, 贺国平, 董丽. 一类新的多步曲线搜索下的超记忆梯度法[J]. 应用数学学报(英文版), 2011, 34(1): 353-362.
[10]刘金魁, 杜祥林, 王开荣. 两类新的变参数下降算法及收敛性[J]. 应用数学学报(英文版), 2010, 33(2): 222-232.
[11]时贞军. Wolfe搜索下记忆梯度法的收敛性[J]. 应用数学学报(英文版), 2006, 29(1): 9-18.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14834
相关话题/应用数学 统计 广西民族大学 梯度 广西