删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

非线性湿气迁移方程H1-Galerkin混合有限元的超逼近分析

本站小编 Free考研考试/2021-12-27

非线性湿气迁移方程H1-Galerkin混合有限元的超逼近分析 谢华朝1, 李素丽1, 秦健21. 河南财经政法大学数学与信息科学学院, 郑州 450046;
2. 河南省委党校, 郑州 451000 Superclose Analysis of a H1-Galerkin Mixed Finite Element Method for Nonlinear Moisture Migration Equations XIE Huazhao1, LI Suli1, QIN Jian21. College of Mathematics and Information Science, Henan University of Economics and Law, Zhengzhou 450046, China;
2. Henan Provincial Party School, Zhengzhou 451000, China
摘要
图/表
参考文献
相关文章(3)
点击分布统计
下载分布统计
-->

全文: PDF(455 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文利用不完全双二次元Q2-和一阶BDFM元,对一类非线性Sobolev-Galpern型的湿气迁移方程,建立了一个新的混合元逼近模式.利用这两个单元插值算子的特殊性质和平均值技巧,一方面,对半离散格式,证明了逼近格式解的存在唯一性.同时导出了原始变量在H1-模和中间变量在H(div)-模意义下具有Oh3)阶的超逼近性质.另一方面,对于线性化Crank-Nicolson(C-N)全离散格式,在没有网格比的要求下,导出了具有Oh3+τ2)阶的超逼近结果.这里h是空间细分参数,τ是时间步长.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2018-01-09
PACS:O242.21
基金资助:国家自然科学基金(11671369)资助项目.

引用本文:
谢华朝, 李素丽, 秦健. 非线性湿气迁移方程H1-Galerkin混合有限元的超逼近分析[J]. 应用数学学报, 2019, 42(6): 813-829. XIE Huazhao, LI Suli, QIN Jian. Superclose Analysis of a H1-Galerkin Mixed Finite Element Method for Nonlinear Moisture Migration Equations. Acta Mathematicae Applicatae Sinica, 2019, 42(6): 813-829.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2019/V42/I6/813


[1] 施德明. 非线性湿气迁移方程的初边值问题. 应用数学学报, 1990, 13(1):31-38(Shi Pengde. On the initial boundary value problem of nonlinear the equation of the Migration of the Moisture in soil. Acta Mathematicae Applicatae Sinica, 1990, 13(1):31-38)
[2] 周家全, 许超, 裴丽芳, 张永胜. 一类非线性Sobolev-Galpern型湿气迁移方程的新的质量集中非协调有限元方法. 生物数学学报, 2013, 28(2):324-330(Zhou Jiaquan, Xu Chao, Pei Lifang, Zhang Yongsheng. The Lumped Mass NFE Method for a Kind of Nonlinear Sobolev-Galpern type Equations of Moisture Migration on Anisotropic Meshes. Jorunal of Bionathematics, 2013, 28(2):324-330)
[3] 陈宝凤,石玉. 非线性Sobolev-Galpern型湿气迁移方程的非协调类Carey元超收敛分析. 数学的实践与认识, 2014, 44(18):309-314(Chen Baofeng, Shi Yu. Superconvergence Analysis of the Nonconforming Quasi-Carey Finite Element for nonlinear Sobolev-Galpern Type Moisture Migration Equation. Mathematics in Practice and Theory, 2014, 44(18):309-314)
[4] 罗振东. 混合有限元方法基础及其应用. 北京:科学出版社, 2006(Luo Zhendong. Foundation and Application of Mixed Finite Element Method. Beijing:Science Press, 2006)
[5] 陈绍春, 陈红如. 二阶椭圆问题新的混合元格式. 计算数学, 2010, 32(2):213-218(Chen Saochun, Chen Hongru. New Mixed Element Schemes for Second order Elliptic Problem. Mathematica Numerica Sinica, 2010, 32(2):213-218)
[6] Shi D Y, Zhang Y D. High accuracy analysis of a new nonconforming mixed finite element scheme for Sobolev equation. Appl. Math. Comput, 2011, 218(7):3176-3186
[7] Shi D Y, Yan F N, Wang J J. Unconditional superconvergence analysis of a new mixed finite element method for nonlinear Sobolev equation. Appl. Math. Comput., 2016, 274:182-194
[8] Pani A K. An H1-Galerkin mixed finite element methods for parabolic partial differential equations. SIAM J. Numer. Anal., 1998, 35(2):712-727
[9] Shi D Y, Wang J J. Superconvergence analysis of an H1-Galerkin mixed finite element method for Sobolev equations. Comput. Math. Appl., 2016(72):1590-1602
[10] 罗娟, 张厚超, 王俊俊. 非线性S-G型湿气迁移方程的H1-Galerkin混合元方法. 山西大学学报, 2016, 39(2):196-203(Luo Juan, Zhang Houchao, Wang Junjun. H1-Galerkin Mixed Finite Element Method for Nonlinear Sobolev-Galpern Type Equations of Moisture Migration. Journal of Shanxi University, 2016, 39(2):196-203)
[11] Ewing R E. Time-stepping Galerkin methods for nonlinear Sobolev partial-differential equations. SIAM J. Numer. Anal., 1978,15(6):1125-1150
[12] Gu H M. Characteristic finite element methods for nonlinear Sobolev equations. Appl. Math. Comput., 1999, 102(1):51-62
[13] Shi D Y, Tang Q L, Gong W. A low order characteristic-nonconforming finite element method for nonlinear Sobolev equation with convection-dominated term. Math. Comput. Simulat., 2015, 114:25-36
[14] Bao W, Cai Y. Uniform error estimates of finite difference methods for the nonlinear Schrödinger equation with wave operator. SIAM J. Numer. Anal., 2012, 50(2):492-521
[15] Li B Y, Sun W W. Unconditional convergence and optimal error estimates of a Galerkin-mixed FEM for incompressible miscible flow in porous media. SIAM J. Numer. Anal, 2013, 51(4):1959-1977
[16] Shi D Y, Wang J J. Unconditional superconvergence analysis of conforming finite element for nonlinear parabolic equation. Appl. Math. Comput., 2017, 294:216-226
[17] Shi D Y, Wang J J. Unconditional superconvergence analysis of a new mixed finite element method for nonlinear Sobolev equation. Appl. Math. Comput., 2016(274):182-194
[18] 刁群, 石东洋, 张芳. Sobolev方程一个新的H1-Galerkin混合有限元分析. 高校应用数学学报, 2016, 31(2):215-224(Diao Qun, Shi dongyang, Zhang Fang. A new H1-Galerkin mixed finite element analysis for Sobolev equation. Applied Mathematics a Journal of Chinese Universities, 2016, 31(2):215-224)
[19] 林群, 严宁宁. 高效有限元构造与分析. 保定:河北大学出版社, 1996(Lin Qun, Yan Ningning. The construction and analysis of high efficiency finite element methods. Baoding:Hebei University Press, 1996)
[20] Hale J K. Ordinary Differential Equations. New York:Willey Inter Science, 1969
[21] Thomee V. Galerkin Finite Element Methods for Parabolic Problems. Second ed., New York:Springer-Verlag, 2006
[22] Wang X Q, Chen C M. Matrix time-extrapolation algorithm for solving semilinear parabolic problems. Appl. Math. Letters, 2017, 64:162-169
[23] 陈传淼. 有限元超收敛构造理论. 长沙:湖南科技出版社, 2001(Chen Chuanmiao. Superconvergence Construction Theory of Finite Element. Changsha:Hunan Science and Technology Press, 2001)

[1]Dong-yang SHI, Fen-ling WANG, Yan-min ZHAO. High Accuracy Analysis of the Lowest Order H1-Galerkin Mixed Finite Element Method for Nonlinear Sine-Gordon Equations[J]. 应用数学学报(英文版), 2017, 33(3): 699-708.
[2]Huo Yuan DUAN, Xing CHEN, Shao You LI , Guo Ping LIANG. 一个改进的Reissner-Mindlin 矩形元[J]. 应用数学学报(英文版), 2003, 26(4): 629-637.
[3]段火元, 梁国平, 马昌凤. Stokes问题的杂交-混合有限元分析[J]. 应用数学学报(英文版), 2003, 26(3): 551-565.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14760
相关话题/应用数学 数学 统计 生物 基础