删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

一类Z3-等变四次向量场的等时中心

本站小编 Free考研考试/2021-12-27

一类Z3-等变四次向量场的等时中心 吴玉森1, 刘一戎21. 河南科技大学数学与统计学院, 洛阳 471023;
2. 中南大学数学与统计学院, 长沙 410083 Four Finite Isochronous Centers in a Quartic Z3-equivariant Vector Field WU Yusen1, LIU Yirong21. School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang 471023, China;
2. School of Mathematics and Statistics, Central South University, Changsha, 410083, China
摘要
图/表
参考文献(0)
相关文章(11)
点击分布统计
下载分布统计
-->

全文: PDF(311 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文研究了一类含四个有限奇点的实四次多项式微分系统,特别地,其中三个奇点是对称的. 我们找到了奇点为等时中心(可线性化中心)的有效条件.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2009-12-17
PACS:O175.12
基金资助:国家自然科学基金(11101126,11371373),河南科技大学博士启动基金(13480021) 以及河南科技大学青年学术带头人科研启动费(13490003)资助项目
引用本文:
吴玉森, 刘一戎. 一类Z3-等变四次向量场的等时中心[J]. 应用数学学报, 2017, 40(2): 218-228. WU Yusen, LIU Yirong. Four Finite Isochronous Centers in a Quartic Z3-equivariant Vector Field. Acta Mathematicae Applicatae Sinica, 2017, 40(2): 218-228.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2017/V40/I2/218


[1] Lin Y P, Li J B. Normal form and critical points of the period of closed orbits for planar autonomous systems. Acta Math. Sinica, 1991, 34: 490-501 (in Chinese)
[2] Farr W W, Li C Z, Labouriau I S, Langford W.F. Degenerate Hopf-bifurcation formulas and Hilbert's 16th problem. SIAM J. Math. Anal., 1989, 20: 13-29
[3] Gasull A, Manosa V. An explicit expression of the first Liapunov and period constants with applications. J. Math. Anal. Appl., 1997, 211: 190-212
[4] Hassard B, Wan Y H. Bifurcation formulae derived from center manifold theroy. J. Math. Anal. Appl., 1978, 63: 297-312
[5] Liu Y R, Huang W T. A new method to determine isochronous center conditions for polynomial differential systems. Bull. Sci. Math., 2003, 127: 133-148
[6] Loud W S. Behavior of the period of solutions of certain plane autonomous systems near centers. Contribut. Differential Equations, 1964, 3: 21-36
[7] Chavarriga J, Giné J, García I. Isochronous centers of a linear center perturbed by fourth degree homogeneous polynomial. Bull. Sci. Math., 1999, 123: 77-96.
[8] Chavarriga J, Giné J, García I. Isochronous centers of a linear center perturbed by fifth degree homogeneous polynomial. J. Comput. Appl. Math., 2000, 126: 351-368
[9] Pleshkan I. A new method of investigating the isochronicity of a system of two differential equations. Differential Equations, 1969, 5: 796-802
[10] Cairó L, Chavarriga J, Giné J, Llibre J. A class of reversible cubic systems with an isochronous center. Comput. Math. Appl., 1999, 38: 39-53
[11] Chavarriga J, Giné J, García I. Isochronicity into a family of time-reversible cubic vector fields. Appl. Math. Comput., 2001, 121: 129-145
[12] Chavarriga J, Giné J, García I. Isochronous centers of cubic systems with degenerate infinity. Differential Equations Dynam. Syst., 1999, 7(2): 221-238
[13] Lloyd N G, Christopher J, Devlin J, Pearson J M, Uasmin N. Quadratic like cubic systems. Differential Equations Dynamical Systems, 1997, 5(3-4): 329-345
[14] Huang W T, Liu Y R. Conditions of infinity to be an isochronous center for a class of differential systems. In: Differential Equations with Symbolic Computation, (Edited by D. Wang, Z. Zheng). Basel: Birkhäuser Press, 2005, 37-54
[15] Huang W T, Liu Y R. Conditions of infinity to be an isochronous centre for a rational differential system. Math. Comput. Model., 2007, 46: 583-594
[16] Liu Y R, Huang W T. Center and isochronous center at infinity for differential systems. Bull. Sci. Math., 2004, 128: 77-89.
[17] Wang Q L, Liu Y R, Du C X. Small limit cycles bifurcating from fine focus points in quartic order Z3-equivariant vector fields. J. Math. Anal. Appl., 2008, 337: 524-536
[18] 刘一戎, 陈海波. 奇点量公式的机器推导与一类三次系统的前10个鞍点量. 应用数学学报}, 2002, 25: 295-302 (Liu Y R, Chen H B. Formulas of singular point quantities and the first 10 saddle quantities for a class of cubic system. Acta Math. Appl. Sinica, 2002, 25: 295-302)
[19] Liu Y R, Li J B. Theory of values of singular point in complex autonomous differential system. Sci. China (Series A), 1990, 3: 10-24
[20] Amelikin B B, Lukashivich H A, Sadovskii A P. Nonlinear Oscillations in Second Order Systems. BGY Minsk: Linin, B. I. Press, 1982

[1]雷轶菊, 覃红. 三水平部分因析设计的中心化L2偏差均值的几个结果[J]. 应用数学学报, 2015, 38(3): 496-506.
[2]杜超雄, 刘一戎. 一类平面微分系统的广义中心条件与极限环分支[J]. 应用数学学报(英文版), 2014, 37(1): 69-77.
[3]谢冬秀, 黄宁军, 张忠志. 对称广义中心对称半正定矩阵模型修正的矩阵逼近法及其应用[J]. 应用数学学报(英文版), 2013, 36(5): 803-812.
[4]侯丽霞, 左连翠. 龙虾树的多级距离标号[J]. 应用数学学报(英文版), 2011, 34(5): 838-852.
[5]董海玲, 侯振挺, 江国朝. 一类马尔可夫骨架过程的强大数定律和中心极限定理[J]. 应用数学学报(英文版), 2011, 34(4): 696-702.
[6]钱爱林, 毛建峰, 桂咏新. 求解一类Helmholtz方程Cauchy问题的中心差分正则化方法[J]. 应用数学学报(英文版), 2011, 34(2): 210-216.
[7]钱爱林, 毛建峰, 桂咏新. 求解一类Helmholtz方程Cauchy问题的中心差分正则化方法[J]. 应用数学学报(英文版), 2011, 34(1): 210-216.
[8]胡舒合. 鞅差序列加权和的中心极限定理[J]. 应用数学学报(英文版), 2001, 24(4): 539-546.
[9]艾文宝, 张可村. 线性规划的一般中心路径和最大步长一般中心路径的跟随算法[J]. 应用数学学报(英文版), 2001, 17(3): 296-303.
[10]艾文宝, 张可村. 线性规划的一般中心路径和最大步长一般中心路径的跟随算法[J]. 应用数学学报(英文版), 2001, 17(3): 296-303.
[11]苏淳. 非平稳NA序列中心极限定理的一些结果[J]. 应用数学学报(英文版), 1998, 21(1): 0-0.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14297
相关话题/应用数学 河南科技大学 系统 统计 序列