[1] 袁永新. 矩阵方程的最小二乘解[J]. 高等学校计算数学学报, 2001, 23(4): 324-329.[2] 周海林. 线性子空间上求解矩阵方程组A1XB1=C1, A2XB2=C2的迭代算法[J]. 计算数学, 2017, 39(2): 213-228.[3] 周海林. 线性子空间上求解矩阵方程AXB+CXD=F的迭代算法[J]. 应用数学学报, 2016, 39(4): 610-619.[4] Peng Y X, Hu X Y, Zhang L. An iteration method for the symmetric solutions and the optimal approximation solution of the matrix equation AXB=C[J]. Applied Mathematics and Computation, 2005, 160(3): 763-777.[5] 赵琳琳. 矩阵方程AXB+CXTD=E的可解性[J]. 山东大学学报(理学版), 2012, 47(10): 45-48.[6] Wang M H, Cheng X H, Wei M S. Iterative algorithms for solving the matrix equation AXB+CXTD=E[J]. Applied Mathematics and Computation, 2007, 187(2): 622-629.[7] 雷茂俊, 孙波, 袁艳杰. 矩阵方程ATXB+BTXTA=C的一般解及其最佳逼近解[J]. 数学理论与应用, 2015, 35(4): 47-51.[8] 盛兴平, 苏友峰, 陈果良. 矩阵方程ATXB+BTXTA=D的极小范数最小二乘解的迭代解法[J]. 高等学校计算数学学报, 2008, 30(4): 352-362.[9] Soares G. Some further notes on the matrix equations ATXB+BTXTA=C and ATXB+BTXA=C[J]. Acta Mathematica Scientia, 2015, 35(1): 275-280.[10] 张贤达. 矩阵分析与应用[M]. 清华大学出版社, 2013.[11] 彭振赟. 几类矩阵扩充问题和几类矩阵方程问题[D]. 湖南大学, 2003.[12] Wu A G, Lv L L, Hou M Z. Finite iterative algorithms for a common solution to a group of complex matrix equations[J]. Applied Mathematics and Computation, 2011, 218(4): 1191-1202.[13] 张凯院, 耿小姣, 聂玉峰. 一类Riccati方程组对称自反解的两种迭代算法[J]. 计算数学, 2016, 38(2): 161-170.[14] Huang B H, Ma C F. Some iterative methods for the largest positive definite solution to a class of nonlinear matrix equation[J]. Numerical algorithms, 2017, 79(1): 153-178.[15] Zhang R F, Gu Y. The Solutions of the Coupled Einstein-Maxwell Equations and Dilaton Equations[J]. Acta Mathematicae Applicatae Sinica English, 2018, 34(3): 485-492. |