删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

正则化HSS预处理鞍点矩阵的特征值估计

本站小编 Free考研考试/2021-12-27

曹阳1, 陈莹婷2
1. 南通大学交通学院, 南通 226019;
2. 南通大学理学院, 南通 226019
收稿日期:2018-04-13出版日期:2020-02-15发布日期:2020-02-15


基金资助:国家自然科学基金项目(11771225)资助.


EIGENVALUE ESTIMATES OF THE REGULARIZED HSS PRECONDITIONED SADDLE POINT MATRIX

Cao Yang1, Chen Yingting2
1. School of Transportation, Nantong University, Nantong 226019, China;
2. School of Sciences, Nantong University, Nantong 226019, China
Received:2018-04-13Online:2020-02-15Published:2020-02-15







摘要



编辑推荐
-->


最近,Bai和Benzi针对鞍点问题提出了一类正则化HSS(Regularized Hermitian and skew-Hermitian splitting,RHSS)预处理子(BIT Numer.Math.,57(2017)287-311).为了进一步分析RHSS预处理子的效果,本文重点研究了RHSS预处理鞍点矩阵特征值的估计,分析了复特征值实部和模的上下界、实特征值的上下界,还给出了特征值均为实数的充分条件.当正则化矩阵取为零矩阵时,RHSS预处理子退化为HSS预处理子,分析表明本文给出的复特征值实部的界比已有的结果更精确.数值算例验证了本文给出的理论结果.
MR(2010)主题分类:
65F10

分享此文:


()

[1] Bai Z Z. Eigenvalue estimates for saddle point matrices of Hermitian and indefinite leading blocks[J]. J. Comput. Appl. Math., 2013, 237:295-306.

[2] Bai Z Z, Benzi M. Regularized HSS iteration methods for saddle-point linear systems[J]. BIT Numer. Math., 2017, 57:287-311.

[3] Bai Z Z, Golub G H. Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle-point problems[J]. IMA J. Numer. Anal., 2007, 27(1):1-23.

[4] Bai Z Z, Golub G H, Ng M K. Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems[J]. SIAM J. Matrix Anal. Appl., 2003, 24(3):603-626.

[5] Bai Z Z, Wang Z Q. On parameterized inexact Uzawa methods for generalized saddle point problems[J]. Linear Algebra Appl., 2008, 428(11-12):2900-2932.

[6] Benzi M, Golub G H. A preconditioner for generalized saddle point problems[J]. SIAM J. Matrix Anal. Appl., 2004, 26(1):20-41.

[7] Benzi M, Golub G H, Liesen J. Numerical solution of saddle point problems[J]. Acta Numer., 2005, 14:1-137.

[8] Cao Y, Jiang M Q, Zheng Y L. A splitting preconditioner for saddle point problems[J]. Numer. Linear Algebra Appl., 2011, 18(5):875-895.

[9] Cao Y, Ren Z R, Shi Q. A simplified HSS preconditioner for generalized saddle point problems[J]. BIT Numer. Math., 2016, 56:423-439.

[10] 曹阳, 陶怀仁, 蒋美群. 鞍点问题的广义位移分裂预条件子[J]. 计算数学, 2014, 36(1):16-26.

[11] Cao Y, Yao L Q, Jiang M Q, Niu Q. A relaxed HSS preconditioner for saddle point problems from meshfree discretization[J]. J. Comput. Math., 2013, 21:398-421.

[12] Chan L C, Ng M K, Tsing N K. Spectral analysis for HSS preconditioners[J]. Numer. Math. Theor. Meth. Appl., 2008, 1:57-77.

[13] 豆铨煜, 殷俊锋. 一类求解鞍点问题的广义不精确Uzawa方法[J]. 计算数学 2012, 34(1):37-48.

[14] Huang T Z, Wu S L, Li C X. The spectral properties of the Hermitian and skew-Hermitian splitting preconditioner for generalized saddle point problems[J]. J. Comput. Appl. Math., 2009, 229:37-46.

[15] Li C X, Wu S L. Some new estimates on the complex eigenvalues of the HSS preconditioned matrix[J]. Appl. Math. Comput., 2014, 248:519-524.

[16] Saad Y. Iterative Methods for Sparse Linear Systems (2nd edn)[M]. SIAM:Philadelphia, 2003.

[17] Simoncini V, Benzi M. Spectral properties of the Hermitian and skew-Hermitian splitting preconditioner for saddle point problems[J]. SIAM J. Matrix Anal. Appl., 2004, 26:377-389.

[1]柯艺芬, 马昌凤. 椭圆PDE-约束优化问题的一个预条件子[J]. 计算数学, 2017, 39(1): 70-80.
[2]黄娜, 马昌凤, 谢亚君. 一类Hermitian鞍点矩阵的特征值估计[J]. 计算数学, 2015, 37(1): 92-102.
[3]任志茹. 三阶线性常微分方程Sinc方程组的结构预处理方法[J]. 计算数学, 2013, 35(3): 305-322.

--> -->
阅读次数
全文







摘要





Cited

Shared






PDF全文下载地址:

http://www.computmath.com/jssx/CN/article/downloadArticleFile.do?attachType=PDF&id=269
相关话题/数学 计算 南通大学 结构 微信