删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

上海交通大学机械与动力工程学院专业学位课程内容介绍《高等工程流体力学》

上海交通大学 免费考研网/2013-01-07


《高等工程流体力学》

课程代码P020502学分/学时3.0/54开课时间
课程名称高等工程流体力学
开课学院机械与动力工程学院
任课教师王彤
面向专业(null)
预修课程(null)
课程讨论时数4 (小时)课程实验数0 (小时)
课程内容简介

本课程以工程中流体机械、动力机械、容器、管道等部件中流体流动以及与部件间相互作用为研究对象,学习流体流动基本性质、描述方程、求解方法。针对流动基本方程,对理想流体势流和有旋流动、粘性流体层流、紊流流动、紊流模型、边界层理论进行介绍。目的是使学生通过分析流体运动规律,学习研究流动的方法和解决问题的方法。

课程内容简介(英文)

Fluid mechanics is the study of the flow of fluids. Properties normally ascribed to fluids include density, compressibility and dynamic viscosity. In general, the motion of fluids is extremely complicated, including highly nonlinear phenomena like turbulence, and cannot be described exactly. The study of the course is a central theme of modern applied mathematics. It is used to model a vast range of physical phenomena and plays a vital role in science and engineering. Tensors provide a natural and concise mathematical framework for formulating and solving problems in areas of physics. In many significant parts of the course Cartesian tensor calculus is needed, and hence a short description of this technique is given in the beginning of the course together with the conception of gradient, divergence, vorticity and some useful mathematics.Navier-Stokes equations are derived from the perspective of Continuum Mechanics. In connection to this, some analytical solutions of the governing equations are studied. Vorticity equations is introduced and applied on inviscous flows. Conformal representation and singularity method is used to solve some simple inviscid potential flow. Perturbation method and characteristic method is introduced for one dimensional compressible flow. The third part of the course is devoted to viscous fluid flow. Basic laminar and turbulent flow concepts are presented. In simple geometries and when certain simplifying properties hold, some laminar flow systems are amenable to exact solutions. As for turbulent flow, the Reynolds transport equations are derived, and based on these, the kinetic energy budget is discussed. The equilibrium hypothesis of Kolmogorov is presented and the basic physical ideas behind simple turbulence models are presented. Some common models used in commercially available codes are also discussed briefly.From the view point of the governing equations some fundamental aero acoustics is introduced as well.

教学大纲

1、流体基本概念、张量表示、梯度散度旋度的物理意义、曲线坐标系与Lame系数2、连续性方程推导与意义、流函数和势函数的概念与计算、涡量函数的计算3、理想流体复势函数意义、针对各种二维奇点的表示方法、复速度计算、奇点法的应用、平面镜像、儒柯夫斯基翼型变换规律、留数定理、合力定理4、扰动势方程推导、意义、偏微分方程特性与定解条件5、粘性流动特点、紊流流动基本特点6、紊流模式理论、近壁面流体流动特点7、基本方程推导(包括NS方程、能量方程、紊流脉动方程时均方程与内部各项的物理意义8、简单边界条件下NS方程的解计算方法9、非惯性坐标系下物理量的关系10、边界层特点与应用、其中各基本物理量的意义,相似解的导出,紊流边界层的结构与特征量分布

课程进度计划

周次#内容第一周数学准备(梯度、散度、旋度)、算子、张量第二周流体基本性质,包括流体力学概念、连续介质假设、密度、粘性、扩散、表面张力等第三、四周流体运动学,包括欧拉观点、连续性方程、流函数、势函数及其解法 第 五、六周流体动力学,包括NS方程推导、流体质点受力分析第七、八、九周二维与三维理想流体流动,采用复变函数分析理想流体流动、儒柯夫斯基翼型变换、留数定理、奇点法第十、十一周可压缩流体流动、超音速流动、特征线方法、非惯性坐标系 第十二周期中考试第十三、十四周层流流动与描述方程、简单流动基本解法第十五、十六周紊流流动概念、描述方程、紊流模式理论第十七、十八周边界层理论、方程推导、解法第十九周期末考试

课程考核要求

听课10%作业20%测验20%讨论10%期中考试20%期末考试20%

参 考 文 献
  • 费祥麟主编,高等流体力学,西安交通大学出版社王献孚、熊鳌魁编著,高等流体力学,华中科技大学出版社清华大学工程力学系编,流体力学基础吴望一,流体力学(上下册)
相关话题/课程