摘要/Abstract
以可再生的异长叶烷酮为原料,设计合成了五种六氢喹唑啉-2-胺基衍生物.化合物在固体状态时呈现出增强的荧光强度以及从暗绿色到亮黄色的荧光颜色的转变.除了良好的热稳定性之外,化合物的固态荧光不容易受到多种常见因素的干扰,比如长时间的紫外照射、增强的制片压力以及升高的加热温度.与遭受严重不利的聚集荧光猝灭效应(ACQ)的化合物相反,二甲氨基取代基构建的1-(((6,6,10,10-四甲基-4-(4'-(二甲基氨基)苯基)-5,7,8,9,10,10a-六氢-6H-6a,9-桥亚甲基苯并[h]-2-喹啉基)亚胺基)甲基)萘-2-酚(3e)呈现出明显的聚集诱导发光现象(AIE).而且,荧光化合物在水溶液中还可以用于对锌离子的专一和灵敏的检测.而后,采用密度泛函理论计算对化合物的光物理性质进行研究.荧光探针还被成功的应用于蜀葵的花粉粒内的锌离子成像.
关键词: 异长叶烷酮, 聚集诱导发光, 聚集荧光猝灭, 锌离子, 荧光成像
A series of hexahydroquinazolin-2-amine-based derivatives have been designed and synthesized from renewable isolongifolanone. Their solid states exhibited an enhanced emission and a dark green to bright yellow color range. In addition to good thermal stability, their solid-state fluorescence is not readily restricted by multiple conventional factors such as long term UV irradiation, increasing operated pressure and elevated heating temperature. In contrast to the derivatives which undergo serious aggregation-caused quenching (ACQ), the dimethylamino-substituted derivative 1-6,6,10,10-tetramethyl-4-(4'-(N,N-dimethylamino)phenyl)-5,7,8,9,10,10a-hexahydro-6H-6a,9-methanobenzo[h]quinazolin-2-imino)methyl)naphthalen-2-ol (3e) demonstrate obvious aggregation-induced emission (AIE) characteristics. Moreover, these fluorescent derivatives were also used for specific and sensitive sensing of Zn2+ ion in aqueous solutions. Then, their photophysical mechanisms were obtained by the density functional theory calculations. These probes were successfully applied to image Zn2+ ion in pollen grains of Althaea rosea.
Key words: isolongifolanone, aggregation-induced emission, aggregation-caused quenching, Zn2+ ion, fluorescence imaging
PDF全文下载地址:
点我下载PDF