哈尔滨工业大学 环境学院 城市水资源与水环境国家重点实验室,黑龙江 哈尔滨 150090
收稿日期:2021-04-22;接收日期:2021-07-09
基金项目:国家自然科学基金(Nos. 31570505, 51978199),黑龙江省应用技术研究与开发计划(No. GA20C014),城市水资源与水环境国家重点实验室(哈尔滨工业大学) 自主课题(No. 2021TS05) 资助
作者简介:王立??哈尔滨工业大学环境学院教授、博士生导师。黑龙江省林学会常务理事,黑龙江省湿地生物多样性学会理事,牡丹江市环境应急专家。主要从事污染或受损生态系统修复理论与技术研究,包括丛枝菌根对环境污染的联合修复机制和生物炭对重金属污染修复效应。主持国家自然科学基金4项,主持国家水体污染控制与治理科技重大专项子课题、国家重点研发计划子课题及其他国家和省部级项目15项。获省部级科技奖2项,出版学术著作2部,授权发明专利15项,在Environ Sci Technol、J Hazard Mater、Environ Pollut等主流刊物发表SCI论文70余篇.
摘要:利用超积累植物进行重金属污染土壤修复是应对全球大面积分布无机污染问题的重要解决方法之一。超积累植物虽然具有超量积累重金属的能力,但其定植、生长和提取功能的发挥都受到重金属胁迫的显著影响。利用丛枝菌根真菌(Arbuscular mycorrhizal fungi,AMF) 强化超积累植物功能可联合发挥二者的功能优势,提升修复效率、缩短修复周期、保持修复效果的稳定性和长期性,在日益复杂、严峻的重金属污染治理领域具有重要的研究价值和广阔的应用前景。文中首先给出了超积累植物的概念、中国本土首次报道的典型重金属元素超积累植物和能与AMF形成共生体系的超积累植物名录,系统深入地探讨了AMF对超积累植物生长和吸收累积重金属的影响,以及超积累植物+AMF联合吸收积累重金属的效应与作用机制,认为AMF可通过调节根围理化与生物条件、元素平衡状况、生理代谢和基因表达等途径,增强超积累植物吸收积累重金属的效应,超积累植物+AMF构建的共生体系具备联合修复重金属污染生境的潜力。最后指出了超积累植物+AMF共生联合修复技术当前面临的关键问题、发展方向和应用前景。
关键词:丛枝菌根真菌超富集植物重金属污染联合修复
Symbiosis between hyperaccumulators and arbuscular mycorrhizal fungi and their synergistic effect on the absorption and accumulation of heavy metals: a review
Li Wang, Gen Wang, Fang Ma, Yongqiang You
State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, Heilongjiang, China
Received: April 22, 2021; Accepted: July 9, 2021
Supported by: National Natural Science Foundation of China (Nos. 31570505, 51978199), Heilongjiang Province Applied Technology Research and Development Program, China (No. GA20C014), State Key Laboratory of Urban Water Resource and Environment (Harbin Institute of Technology) (No. 2021TS05)
Corresponding author: Li Wang. Tel/Fax: +86-451-86283008; E-mail: wli@hit.edu.cn.
Abstract: The remediation of heavy-metal (HM) contaminated soil using hyperaccumulators is one of the important solutions to address the inorganic contamination widely occurred worldwide. Hyperaccumulators are able to hyperaccumulate HMs, but their planting, growth, and extraction capacities are greatly affected by HM stress. The application of arbuscular mycorrhizal fungi (AMF) enhances the function of hyperaccumulators by combining the functional advantages of both, improving the efficiency of remediation, shortening the remediation cycle, and maintaining the stability and persistence of the remediation. Thus, the combined use of AMF with hyperaccumulators has broad prospects for application in the management of increasingly complex and severe HM pollution. This review starts by defining the concept of hyperaccumulators, followed by describing the typical hyperaccumulators that were firstly reported in China as well as those known to form symbioses with AMF. This review provides a systematic and in-depth discussion of the effects of AMF on the growth of hyperaccumulators, as well as the absorption and accumulation of HMs, the effects and mechanism on the hyperaccumulator plus AMF symbiosis to absorb and accumulate HMs. AMF enhances the function of hyperaccumulators on the absorption and accumulation of HMs by regulating the physicochemical and biological conditions in the plant rhizosphere, the situation of elements homeostasis, the physiological metabolism and gene expression. Moreover, the symbiotic systems established by hyperaccumulators plus AMF have the potential to combine their abilities to remediate HMs-contaminated habitat. Finally, challenges for the combined use of remediation technologies for hyperaccumulator plus AMF symbiosis and future directions were prospected.
Keywords: arbuscular mycorrhizal fungihyperaccumulating plantheavy metal pollutioncombined remediation
随着工矿业和农业生产的迅速发展,土壤重金属污染日益严重,对自然生态系统的良性循环和人类的生存环境造成了严重的危害,重金属污染土壤的修复迫在眉睫。植物提取是指利用对目标重金属具有较强富集能力的特殊植物从污染土壤中吸取重金属,并将其转移、贮存到茎、叶等地上部,随后收割地上部并集中处置,通过连续种植这种植物使得土壤中重金属含量降低至安全标准,该技术具有成本低、不破坏土壤结构、无二次污染、修复面积大等优点,近年来已得到社会的广泛认可[1-2]。
植物提取修复效率主要取决于修复植物地上部生物量以及转运重金属至地上部的能力[3]。然而,超积累植物大多存在生长缓慢、生物量低、根区扩张深度浅和对重金属转运效率低等共性问题,使得单一地利用该类植物进行污染土壤的修复具有一定的局限性,很难商品化推广与大规模应用[2-4]。如何找到有效的措施改进现有的超积累植物提取修复模式对于植物修复技术的健康发展和工程应用具有重要的实践意义,也成了重金属污染土壤原位修复的主要热点方向之一。刘志培和刘双江[4]指出多元生物耦合的修复模式相比于单一生物修复技术更具优势,在污染场地的生物修复中应用潜力巨大。丛枝菌根真菌(Arbuscular mycorrhizal fungi,AMF) 能深刻影响微量元素在根土界面中的迁移转化,AMF与植物之间的协同作用可能在重金属污染土壤的植物修复中发挥重要作用[5-6]。研究表明,AMF可提高超积累植物重金属抗性及其在胁迫环境中的定植能力、促进植物生长及元素积累,加速植物提取[5-8]。Miransari[9]指出,超积累植物与AMF有机结合是解决土壤重金属污染问题的关键。因此,研究土壤生态系统中菌根真菌与超积累植物间的互作关系,对据此方向性的强化生物萃取技术具有重要意义。文中综述了国内外有关超积累植物与AMF共生的研究成果,系统总结了AMF对超积累植物生长、吸收和转运重金属的影响,探讨了超积累植物+AMF联合吸收积累重金属的效应与作用机制,以促进该共生联合修复技术在土壤重金属污染原位修复中的应用。
1 超积累植物的概念“Hyperaccumulator”一词最早见于Jaffre等1976年发表在Science的报道[10],指的是那些在确保自身生长不受影响的条件下能够超量积累一种或多种重金属并将其转运到地上部的植物。2021年5月30日通过CNKI数据库以全文检索的方式,发现“hyperaccumulator”的中文译名主要有“超富集植物” (9 748篇)、“超积累植物” (7 945篇)、“超累积植物” (2 370篇)、“超量积累植物” (764篇) 等。这种术语缺乏统一性,不利于相关文献的检索并降低了对该领域的理解。陈同斌等[11]依据“hyperaccumulator”的定义和科学内涵于2005年建议将其统一译成超富集植物更为合适,但从文献库的检索结果来看并未引起足够的重视。骆永明等[12]在最新编著的“镉锌污染土壤的超积累植物修复研究”中,编者提出鉴于历史沉淀、****的认识以及我国植物修复领域相关研究的最新进展,将“hyperaccumulator”译为超积累植物可能更为合适并为大家乐于接受和采用。
1977年,Brooks等[13]首次提出了超积累植物的概念,当时用以命名茎中Ni含量大于1 000 mg/kg的植物。通过Web of Science以“hyperaccumulator”为主题词检索近40年发表的文献(超过4 900篇),发现对超积累植物的定义尚未达成共识,仍存在诸多争议。目前,国内外****普遍认为超积累植物首先应满足两个特征[13-16]:(1) 临界含量特征,即植物地上部富集的重金属含量达到一定的标准。早期国际上引用最多的是Baker和Brooks[13]于1989年提出的标准,即地上部(主要为茎或叶)积累Mn、Zn含量至少达到10 000 mg/kg,Cu、Cr、Pb、Ni、Co达到1 000 mg/kg,Cd达到100 mg/kg。2013年Van der Ent等[14]推荐采用新标准(表 1),该标准须是植物在自然栖息地(非实验室水培或利用人工污染土壤试验) 维持自身生长的同时达到相应的重金属积累量,目前已经获得了国际同行的广泛认可(Web of Science引用达684次);(2) 转运和富集特征,即转运系数(地上部重金属浓度/根部重金属浓度) 和富集系数(植物地上部重金属浓度/土壤重金属浓度) 均大于1。澳大利亚昆士兰大学矿山土地复垦研究中心建立了超积累植物全球数据库(http://hyperaccumulators.smi.uq.edu.au/collection/),截止到2021年5月30日,数据库中共收录超积累植物721种(含多金属超积累植物39种),约占已知维管植物的0.2%,涵盖76个科,其中Ni超积累植物532种,Cu超积累植物53种,Co和Mn超积累植物各42种,Se超积累植物41种,Zn超积累植物21种,Cd超积累植物10种,Pb超积累植物9种,As超积累植物5种,Tl和稀土元素超积累植物各2种,Cr超积累植物1种。考虑到自然界中可能存在许多尚未确定的超积累植物,随着对这类植物的新发现,数字会逐渐增加。我国近20年在超积累植物的研究中取得了一系列成果,表 1列举了中国本土首次发现的超积累植物[16-24]。因为早期对超积累植物衡量标准的不统一性,数据库收录的超积累植物物种数并不全,如滇苦菜Picris divaricata[16]和忍冬Lonicera japonica[25]也常被认为是Cd的超积累植物,芦苇堇菜Viola calaminaria是Zn的超积累植物[26],但数据库中并未记录。
表 1 超积累植物标准及中国本土首次报道的超积累植物Table 1 Standards for defining hyperaccumulating plants and the firstly recorded species in China
Metal(loid)s | Threshold (mg/kg) | Families | Species reported | China first records and shoot concentrations | References |
Ni | > 1 000 | 52 | 532 | – | |
Cu | > 300 | 20 | 53 | Commelina communis (547 mg/kg) | [16] |
Co | > 300 | 18 | 42 | – | |
Mn | > 10 000 | 16 | 42 | Phytolacca americana L. (19 299 mg/kg) | [17] |
Se | > 100 | 7 | 41 | Cardamine hupingshanensis (1 965 mg/kg) | [18] |
Zn | > 3 000 | 9 | 21 | Sedum alfredii Hance (4 515 mg/kg) | [19] |
Cd | > 100 | 7 | 10 | Viola baoshanensis (1 168 mg/kg) | [20] |
Pb | > 1 000 | 6 | 9 | Arabis paniculata (2 300 mg/kg) | [21] |
As | > 1 000 | 1 | 5 | Pteris vittata L. (5 070 mg/kg) | [22] |
Tl | > 100 | 1 | 2 | – | |
Rare earth elements | > 1 000 | 2 | 2 | Dicranopteris dichotoma (7 000 mg/kg) | [23] |
Cr | > 1 000 | 1 | 1 | Leersia hexandra Swartz (2 978 mg/kg) | [24] |
表选项
2 能形成丛枝菌根的超积累植物名录丛枝菌根(AM) 是球囊菌门专性营养共生真菌和80%的陆生植物之间形成的互惠共生体。寄主植物与AMF间的养分交换被认为是这两个共生生物间的主要利益。AMF通过根外菌丝网扩大了根系吸收范围,帮助寄主植物获取土壤中N、P、Zn和Cu等矿质营养和水分以促进生长,同时AMF在增强植物抗逆能力、缓解重金属毒害、调节植物吸收、转运和累积重金属等方面发挥重要作用;寄主植物则向AMF提供脂肪酸等碳水化合物[27-29]。尽管AMF广泛分布在陆地生态系统中,但在重金属含量极高的环境中却罕见[30]。早期普遍认为超积累植物(含十字花科104种) 没有特殊的营养吸收策略,一般不形成AM[31]。Audet[32]也指出由于超积累植物和AMF的生态特异性,两者的生存环境背景通常是矛盾的。因此,AMF与超积累植物间的相互作用长期被忽略,直到近年来陆续发现某些超积累植物也能被AMF侵染[33-52],且AMF对超积累植物生长和重金属的吸收产生重要影响,这才引起了科研人员的广泛关注。迄今为止,据文献报道能形成AM的超积累植物有28种,分布于16个科,包括Ni超积累植物11种,Cd超积累植物6种,As超积累植物2种,Cu、Mn、Tl、Pb、Cr和Zn超积累植物各1种以及多金属超积累植物3种(表 2)。虽然本综述旨在尽可能全面,但我们并不寻求就给定的超积累植物物种的菌根侵染状态得出任何明确结论。例如,续断菊Sonchus asper L.在国内也被认为是Cd的超积累植物[53],且AMF+续断菊共生体系在Cd污染土壤的植物修复中有很好的效果[54],但未被列入表 2,因为按照Van der Ent等[14]的标准,续断菊从严格意义上并不满足在自然栖息地生长就能达到超积累标准的条件。
表 2 已经报道的能形成丛枝菌根的超积累植物Table 2 The reported hyperaccumulators that could be colonized by AMF
Element(s) | AMF strains | Family | Hyperaccumulator species | References |
Ni | Gigaspora sp. | Asteraceae | Senecio anomalochrous | [33] |
Gigaspora sp. | Asteraceae | Senecio coronatus | [33] | |
Gigaspora sp. | Asteraceae | Berkheya zeyheri | [33] | |
Glomus intraradices | Asteraceae | Berkheya coddii | [33] | |
Indigenous AMF | Euphorbiaceae | Phyllanthus favieri | [34] | |
Glomus sp. | Cunoniaceae | Geissois pruinosa | [35] | |
Glomus sp. | Cunoniaceae | Geissois hirsuta | [35] | |
Glomus sp. | Rubiaceae | Psychotria douarrei | [35] | |
Glomus sp. | Flacourtiaceae | Homalium kanaliense | [35] | |
Glomus sp. | Sapotaceae | Sebertia acuminata | [35] | |
Glomus sp. | Violaceae | Hybanthus austrocaledonicus | [35] | |
Cd | Glomus versiforme | Solanaceae | Solanum nigrum L. | [36] |
Glomus versiforme | Solanaceae | Solanum photeinocarpum | [37] | |
Glomus versiforme | Caprifoliaceae | Lonicera japonica | [38] | |
Indigenous AMF | Violaceae | Viola baoshanensis | [39] | |
Glomus mosseae | Asteraceae | Bidens pilosa L. | [40] | |
Funneliformis mosseae | Asteraceae | Sphagneticola calendulacea | [41] | |
Cu | Glomus sp. | Lamiaceae | Elsholtzia splendens | [42] |
Mn | Glomus sp. | Phytolaccaceae | Phytolacca americana | [43] |
Tl | Native AMF | Brassicaceae | Biscutella laevigata | [44] |
Pb | Native AMF | Poaceae | Dactyloctenium aegyptium | [45] |
Cr | Rhizophagus fasciculatus | Poaceae | Leersia hexandra | [46] |
Zn | Glomus mosseae | Violaceae | Viola calaminaria | [47] |
As | Gigaspora margarita | Pteridaceae | Pteris vittata L. | [48] |
Glomus intraradices | Pteridaceae | Pityrogarmma calomelanos | [49] | |
Zn, Cd | Glomus mosseae | Crassulaceae | Sedum alfredii | [50] |
Zn, Cd | Acaulospora mellea | Crassulaceae | Sedum plumbizincicola | [51] |
Zn, Cd, Pb | Indigenous AMF | Brassicaceae | Thlaspi praecox Wulfen | [52] |
表选项
3 AMF对超积累植物生长和吸收转运重金属的影响3.1 AMF对超积累植物生长的影响大多数研究结果表明接种AMF可以提高超积累植物的生长量,但也有少数报道AMF能抑制其植株的生长或无显著影响(表 3)[55-67]。Jiang等[38]发现Cd胁迫下(10和20 mg/kg) 接种根内根孢囊霉Rhizophagus intraradices和变形球囊霉Glomus versiforme增加了忍冬地上部和根系的生物量。Wang等[68]研究发现,Cd污染土壤中接种AMF明显促进了Cd超积累植物龙葵Solanum nigrum的生长,且菌根依赖性随着Cd浓度增加而增加。相比于非菌根植物,菌根化的植物在重金属胁迫下通常表现出更好的生理特性。Cd胁迫下接种AMF增加了超积累植物龙葵的叶绿素含量和光合特性指标[68]。Li等[42]发现接种AMF提高了Cu胁迫下海州香薷Elsholtzia splendens的发芽率,使其快速适应Cu胁迫。接种AMF能促进Cu污染土壤中海州香薷叶片叶绿素的合成[69]。低P条件有利于AMF定殖于植物根系[60],而AMF侵染水平与其促生效应呈正相关[33, 70],因此AMF对超积累植物生长的影响与生长基质中P的水平密切相关。Zhong等[39]研究了不同施P水平下土著AMF对不同Cd胁迫处理下的宝山堇菜Viola baoshanensis生长的影响,发现AMF只在低P水平下可增加地上部生物量,当土壤有效P高时,AMF反而降低地上部生物量。Vogel-Mikus等[30]发现AMF接种并没有增加Zn、Cd和Pb多金属超积累植物Thlaspi praecox地上部生物量,反而降低了根系生物量,可能是因为菌根围大部分的碳源被AMF利用。Zn污染下接种根内根孢囊霉对龙葵生长没有影响[36]。Jankong等[49]发现As污染土壤中AMF对As超积累植物粉叶蕨Pityrogramma calomelanos的生长无显著效应。Turnau等[33]指出AMF促生效应可能与AMF菌种自身耐性及其与超积累植物共生的特性有关。
表 3 AMF对超积累植物生长、吸收、转运和积累重金属的影响Table 3 Effects of AMF on hyperaccumulator growth, absorption, transfer, and accumulation of heavy metals
AMF strains | Hyperaccumulators | Metal type and concentration | Dry weight | Concentration | Shoot accumulation | TF | References | |||
Shoot | Root | Shoot | Root | |||||||
Glomus versiforme | Solanum nigrum | Cd: 25, 50 mg/kg | ↑ | ↑ | ↑ | ↑ | ↑(62%–112%) | ↓ | [3] | |
Glomus versiforme | Solanum nigrum | Cd: 100 mg/kg | ↑ | ↑ | ↓ | ↓ | ↑(249%) | ↑ | [3] | |
Rhizophagus intraradices | Solanum nigrum | Cd: 30, 60 mg/kg | ↑ | ↑ | ↑ | ↑ | ↑(67%–122%) | ↓ | [5] | |
Rhizophagus intraradices | Solanum nigrum | Cd: 120 mg/kg | ↑ | ↑ | ns | ns | ↑(149%) | ns | [5] | |
Funneliformis mosseae | Solanum nigrum | Cd: 15 mg/kg | ↑ | ns | ↑ | ↓ | ↑(20%) | ↑ | [6] | |
Indigenous AMF | Thlaspi praecox Wulfen | Cd: 59.3–67.9 mg/kg | ns | ↓ | ↓ | ↓ | ↓ | ↑ | [30] | |
Glomus versiforme | Solanum photeinocarpum | Cd: 5–4 mg/kg | ↑ | ↑ | ↓ | ↑ | ↑(21%–139%) | ↓ | [37] | |
Rhizophagus intraradices | Lonicera japonica | Cd: 10, 20 mg/kg | ↑ | ↑ | ↓ | ↑ | ns | ↓ | [38] | |
Indigenous AMF | Viola baoshanensis | Cd: 50 mg/kg | ↓ | ↓ | ↓ | ns | ↓ | ↓ | [39] | |
Indigenous AMF | Viola baoshanensis | Cd: 100 mg/kg | ns | ns | ns | ↓ | ns | ↑ | [39] | |
Indigenous AMF | Viola baoshanensis | Cd: 200 mg/kg | ↓ | ↓ | ↓ | ↓ | ↓(31%) | ↑ | [39] | |
Funneliformis mosseae | Sphagneticola calendulacea | Cd: 25–100 mg/kg | ↑ | ↑ | ↑ | ↑ | ↑(212%–277%) | ns | [41] | |
Acaulospora mellea | Sedum plumbizincicola | Cd: 0.68 mg/kg | ↑ | – | ↓ | – | ↑(75%) | – | [51] | |
Funneliformis mosseae | Solanum nigrum | Cd: 5–40 mg/kg | ↑ | ↑ | ↑ | ↑ | ↑(47%–116%) | ns | [55] | |
Funneliformis mosseae | Solanum nigrum | Cd: 1.12 mg/kg | ↑ | ↑ | ↓ | ↓ | ns | ns | [56] | |
Glomus caledonium | Sedum alfredii | Cd: 1.6 mg/kg | ↑ | ns | ns | ns | ↑(78%) | ns | [57] | |
Glomus mosseae | Sedum alfredii | Cd: 1.6 mg/kg | ↑ | ↑ | ns | ns | ↑(37%) | ns | [57] | |
Glomus caledonium | Elsholtzia splendens | Cu: 50–200 mg/kg | ↑ | ↑ | ↑ | ↓ | ↑ | ↑ | [7] | |
Indigenous AMF | Thlaspi praecox Wulfen | Zn: 1 903–2 052 mg/kg | ns | ↓ | ns | ↓ | ns | ↑ | [30] | |
Glomus mosseae | Solanum nigrum | Zn: 426 mg/kg | ↓ | ns | ↑ | ns | ↓(35%) | ↑ | [36] | |
Glomus intraradices | Pteris vittata | As: 100, 200 mg/kg | ↑ | ↑ | ↑ | ↓ | ↑(144%) | ↑ | [8] | |
Gigaspora margarita | Pteris vittata | As: 25 mg/kg | ↑ | ns | ns | ↓ | ↑(12%) | ↑ | [48] | |
Mixed AMF | Pityrogramma calomelanos | As: 243 mg/kg | ns | ns | ↓ | ns | ↓(25%) | ns | [49] | |
Glomus mosseae | Pteris vittata | As: 300 mg/kg | ↑ | ns | ↓ | ↓ | ↑(43%) | ↑ | [58] | |
Indigenous AMF | Pteris vittata | As: 50, 100 mg/kg | ↑ | ↑ | ↑ | ↑ | ↑(46%–316%) | ↑ | [59] | |
Indigenous AMF | Pteris vittata | As: 100 mg/kg | ↑ | ns | ↑ | ns | ↑(5 fold) | ↑ | [60] | |
Mixed AMF | Pteris vittata | As: 9 623 mg/kg | ↑ | ↑ | ns | ns | ↑(310%) | ↑ | [61] | |
Mixed AMF | Pteris vittata | As: 300 mg/kg | ↑ | ↑ | ↑ | ns | ↑(237%) | ↑ | [62] | |
Glomus mosseae | Pteris vittata | As: 1 000 μmol/L | ↑ | ↑ | ↑ | ↑ | ↑(3.2 fold) | ns | [63] | |
Glomus mosseae | Pteris vittata | As: 106 mg/kg | ↓ | ↓ | ns | ns | ↓(32%) | ns | [64] | |
Mixed AMF | Pteris vittata | As: 170 mg/kg | ↑ | – | ↑ | – | ↑(114%) | – | [65] | |
Glomus mosseae | Pteris vittata | As: 25 mg/L | ns | ↑ | ns | ↓ | ns | ↑ | [66] | |
Glomus intraradices | Berkheya coddii | Ni: 1 070 mg/kg | ↑ | – | ↑ | – | ↑(344%) | – | [33] | |
Indigenous AMF | Berkheya coddii | Ni: 650 mg/kg | ↑ | ↑ | ns | ↓ | ↑(20 fold) | ↑ | [67] | |
Rhizophagus intraradices | Berkheya coddii | Ni: 650 mg/kg | ↑ | ↑ | ↓ | ↓ | ↑(13 fold) | ↑ | [67] | |
↑: AMF induced increase; ↓: decrease; ns: not significance; –: data not available. Translocation factor (TF)=shoot metal concentration/root metal concentration. Numbers in parenthess represent the percentage metal removal amount changed by comparing with un-inoculated and AMF inoculated plants. |
表选项
3.2 AMF对超积累植物吸收和转运重金属的影响Audet等[71]对AMF影响植物吸收重金属的文献(90%为非超积累植物) 进行了meta分析,结果表明:重金属浓度较低时,AMF具有强化寄主植物吸收转运重金属的功能;而当重金属浓度较高时,AMF则阻滞了植物吸收转运重金属。由于超积累植物自身对重金属有特殊的吸收、转运、贮存和耐受机制,因此AMF对其吸收转运重金属的效应是否与普通植物具有共性值得深入探究。
通常认为,接种AMF有利于重金属在根系的固定,减少向地上部转移[37]。然而AMF对超积累植物吸收转运重金属的效应却呈现出功能多样性(表 3)。Li等[6]发现在15 mg/kg Cd污染的土壤中,接种摩西斗管囊霉Funneliformis mosseae增加了龙葵根系Cd浓度,降低了地上部浓度。但也有研究发现接种AMF降低了根系重金属浓度,如25 mg/kg As水平下接种珠状巨孢囊霉Gigaspora margarita对蜈蚣草Pteris vittata地上部As浓度没有影响,却降低了根系As浓度[48]。同样,土著AMF降低了Thlaspi praecox根系Zn浓度,对地上部Zn浓度没有影响[30]。植物体内重金属浓度降低被认为是AMF促进植物健壮生长所形成的“稀释效应”[72]。除了调控超积累植物吸收重金属,AMF还能影响重金属在植物器官内的分配[73]。如Lu等[41]利用盆栽试验发现不同Cd污染土壤下(25、50和100 mg/kg),接种摩西斗管囊霉能协助超积累植物蟛蜞菊Sphagneticola calendulacea根系吸收Cd并转运至地上部,表现为Cd转运系数增加。接种从重金属污染区分离出的以聚生球囊霉Glomus fasciculatum为主要菌种的土著AMF显著促进了Zn、Cd自Thlaspi praecox根系向地上部的转运,但对Pb的转运没有影响[30]。王发园等[7]发现接种AMF可以显著促进Cu向海州香薷地上部分配。Bona等[66]发现接种摩西斗管囊霉降低了蜈蚣草地下部As浓度,促进As向地上部分配。Tan等[37]发现在5、10、20和40 mg/kg Cd水平接种变形球囊霉均抑制了Cd在少花龙葵Solanum photeinocarpum中的转运,降低了地上部Cd浓度。Jiang等[55]发现10 mg/kg Cd水平下龙葵接种摩西斗管囊霉后地上部Cd浓度增加幅度显著高于根系Cd浓度,而在20 mg/kg Cd水平下根系Cd浓度增加幅度大于地上部。Wang等[5]发现接种根内根孢囊霉在低Cd浓度下促进Cd向地上转运,而在高浓度下则抑制Cd的转运。Zhong等[39]发现在50 mg/kg Cd水平接种AMF显著降低Cd向宝山堇菜地上部的分配,降低地上Cd浓度,而在200 mg/kg Cd水平增加转运系数,但此时主要是通过减少根部Cd吸收降低地上部Cd浓度。Yang等[56]发现在开花期,AMF接种后龙葵后地上部和根系Cd浓度有下降趋势,但Cd在植物体内的分配策略没有变化。Hu等[57]发现接种苏格兰球囊霉Glomus caledonium和摩西斗管囊霉对东南景天Sedum alfredii的Cd转运效率无显著影响。Leung等[62]发现接种AMF显著增加As在蜈蚣草体内的转移系数。
不难发现,被称为“功能多样性”的植物和AMF组合可能导致共生联合体在植物生长和重金属吸收转运方面的不同结果。AMF对超积累植物生长、吸收和转运重金属的效应可以是促进、抑制或不产生影响,尚无一致的结论,即使是同种超积累植物+AMF共生体系在相同浓度的重金属胁迫下,菌根效应都可能相反。总之,AMF产生的效应与其种类、寄主植物多样性、重金属类型及浓度、土壤性质、生长环境等密切相关。如AMF对龙葵吸收转运Zn的效应主要取决于真菌菌株和Zn的污染水平[74],AMF对蜈蚣草As吸收转运效应与As的浓度、AMF菌种和土壤条件有关[58-66]。
4 超积累植物+AMF共生联合吸收积累重金属的效应与作用机制4.1 超积累植物+AMF共生联合吸收积累重金属的效应由于目前公认以植物地上部重金属积累量(重金属浓度×干重) 作为评估修复效率的参数[2],文中总结出基于促生长效应的超积累植物重金属积累响应AMF的模式。(1) 污染土壤中AMF若对超积累植物无促生长效应(生物量下降或不变),重金属积累量也呈现出相应的减少或不变,通常不会增加[30, 39, 56]。如Chen等[64]发现接种AMF使蜈蚣草生物量下降,As浓度不变,导致地上部As提取量削减了32%。(2) 若AMF表现出促生长效应,超积累植物重金属积累变化呈现两种趋势:一是不变,此时AMF促生长效应刚好抵消AMF引起的重金属浓度的下降[38, 56];二是增加,此时超积累植物地上部重金属浓度的变化可能呈现增加[6, 41, 55, 62]、不变[48, 57, 61]或降低[37, 51, 58]。目前在超积累植物+AMF共生修复体系研究中,由生物量增加、重金属浓度降低带来的积累量增加(由于生物量的增加幅度高于重金属浓度降低幅度) 的研究报道较多,如Liu等[3]发现在100 mg/kg Cd污染土壤中,接种变形球囊霉降低了龙葵地上部Cd浓度19%,而生物量增加310%导致地上部Cd积累量增加249%。Liu等[58]通过盆栽试验发现在300 mg/kg As添加水平接种摩西斗管囊霉显著降低了蜈蚣草地上部As浓度38%,但地上部生物量增加125%导致As的吸收总量增加43%。林先贵等[51]在田间试验中亦发现AMF对超积累植物伴矿景天Sedum plumbizincicola累积Cd的效应呈现相似规律。也有研究表明AMF能同时促进超积累植物生长与重金属吸收,Li等[6]发现接种AMF同时促进龙葵地上部生物量和重金属浓度,重金属积累量增加20%。在Ni污染土壤中,AMF联合Berkheya coddii使Ni吸收量增加了344%[33]。在镉污染土壤中,AMF接种使蟛蜞菊地上部Cd提取量增加了212%–277%[41]。在100 mg/kg As污染水平,接种土著AMF使蜈蚣草地上部As积累提高了5倍[60]。
4.2 超积累植物+AMF联合吸收积累重金属的作用机制AMF协助超积累植物吸收积累重金属,主要有两个途径(图 1):一是通过构建物理性防御屏障、调节元素平衡、抗氧化系统及抗逆基因表达等生理机制来增强寄主植物重金属耐受性,促进生长,此时地上部重金属浓度由于“生长稀释效应”虽有所降低,但生物量的积累弥补了浓度上的降低,重金属提取总量仍增加。超积累植物+AMF在重金属污染生境中表现出的联合修复效应更多依靠的还是菌根发挥的促生效应,AMF通过促进植物生长,增加重金属积累量。二是通过菌根根外菌丝吸收、改变根系构型、调节重金属转运相关基因表达以及对菌根围微环境的修饰定向调控重金属在土壤-根-地上部的迁移转运,促进地上部重金属富集。
图 1 超积累植物+AMF共生联合修复重金属污染土壤机制 Fig. 1 Mechanism of AMF-assisted hyperaccumulator for combined remediation of HM-contaminated soil. |
图选项 |
(1) 形成物理性防御与化学吸附固定机制
重金属根系固定化及真菌结构固持等物理性防御屏障能大大缓解重金属对植物的毒害[28, 62]。土壤中形成的大量根外菌丝能促进重金属的固定和转化为无毒形态,大部分重金属被积累固持在根内的AMF泡囊、孢子和丛枝等结构中,减少重金属向地上部分配以此来“规避”重金属的毒害[75-76]。Salazar等[77]利用全反射X射线荧光技术对AMF孢子中的Pb进行了定量分析,发现真菌孢子中的Pb含量可达0.06 μg/孢子。AMF还可以通过根内菌丝吸附,细胞壁及原生质膜组分如几丁质、纤维素等螯合固定重金属[30, 76]。球囊霉素相关土壤蛋白(Glomalin-related soil protein,GRSP) 是AMF菌丝分泌产生的一种专性糖蛋白,具有将重金属络合固定在菌根围的能力,GRSP通过降低重金属的生物有效性进而降低重金属对寄主植物的毒害[78]。Malekzadeh等[79]发现在Pb浓度为450 μmol/L时,每1 g GRSP可以结合665.72 mg Pb,且土壤中GRSP含量随Pb的浓度上升而增加。
(2) 维持元素稳态、均衡养分供给
维持植物矿质元素的吸收与平衡是AMF的生理功能之一[80]。重金属抑制根系对营养元素的吸收,如Cd、Cu、Zn、Pb等能与正磷酸盐发生反应,导致土壤速效P含量下降,造成植物因P吸收不足而生长受到抑制[81]。Leung等[8]发现单一或混合接种从砷矿区分离出的摩西斗管囊霉和根内根孢囊霉均能改善As超积累植物蜈蚣草体内N、P的营养状况,促进生长。接种土著AMF促进了Ni超积累植物Berkheya coddii地上部对K、Fe、P和Ca的吸收,提高了植株在富Ni土壤中的存活率[67]。研究表明,磷的积累效率决定了菌根植物的生长和对重金属的吸收能力[27]。AMF分泌的磷酸酶和有机酸等有助于促进难溶态P溶解,同时菌丝上具有高亲和力的P转运蛋白以及根外菌丝扩大吸收养分的范围,因此AMF能改善寄主植物的P营养状况[57, 82-83],这也是AMF帮助植物抵抗重金属毒害的主要机制之一。笔者最近研究发现,接种AMF可显著提高龙葵对P的吸收,缓解Cd的毒害[5]。此外,Cd、Pb等作为生长非必需元素,进入植物体内没有专性通道,因此只能占用植物生长必需营养元素使用的运输场所或路径,进而破坏离子稳态,导致植物相关功能的崩溃[84]。Wang等[68]发现Cd对龙葵的毒害可能是其与必需元素Fe和Ca竞争导致的营养失衡引起的,而AMF对植物矿质稳态有积极作用,从而保护植物免受Cd的毒害。Adeyemi等[81]发现接种AMF促进了大豆Glycine max L.体内对Cd和Mg的吸收,Ca、Mg含量的增加可以降低Pb对植物的毒性作用,因为Ca可以维持细胞壁和细胞膜的完整性,Mg含量的增加可以保证光合作用的正常进行。
(3) 调节生理生化代谢
重金属通过诱导产生并积累大量的活性氧自由基(Reactive oxygen species,ROS),造成植物体内活性氧代谢失调,引发膜中不饱和脂肪酸发生过氧化反应,破坏膜的结构与功能,造成酶失活,损害植物的正常代谢[85]。抗氧化系统作为一种防御机制,对于植物耐受重金属具有重要作用,通过清除ROS从而保护植物免受氧化胁迫,包括抗氧化酶类如超氧化物歧化酶(Superoxide dismutase,SOD)、过氧化物酶(Peroxidase,POD)、过氧化氢酶(Catalase,CAT)、谷胱甘肽过氧化物酶、抗坏血酸过氧化物酶(Ascorbate peroxidase,APX) 和谷胱甘肽还原酶(Glutathione reductase,GR),以及非酶抗氧化剂如抗坏血酸(Ascorbic acid,AsA)、谷胱甘肽(Glutathione,GSH) 以及多酚、类黄酮等[86-87]。植物对重金属胁迫的耐受性随着抗氧化酶和非酶活性的增加而增加[37]。Wang等[68]证实,接种根内根孢囊霉可显著提高龙葵叶片中SOD、POD、多酚、总黄酮和GSH的含量,降低过氧化氢、超氧阴离子和丙二醛的积累,从而促进植株的生长。Cu胁迫下接种AMF可使海州香薷叶片GSH、AsA的含量显著增加,而SOD、APX活性显著提高[69]。接种变形球囊霉使Cd超积累植物少花龙葵叶片中CAT、POD、APX的活性显著提高[37]。Jiang等[38]的研究也发现接种AMF增加GR、CAT、APX的活性是忍冬耐受Cd的主要机制之一。较高的植物螯合肽(Phytochelatins,PCs) 水平可导致重金属的积累增加[8]。接种AMF增加了忍冬体内PCs的含量,增加了根系Cd的浓度,减轻了对地上部的毒害[38]。区隔化在重金属的解毒过程中起着重要作用[61],可能与重金属的亚细胞分布和化学形态有关。AMF通过增加果胶和半纤维素多糖含量来增加细胞壁对Pb的固定,同时提高细胞壁内POD活性,保护寄主植物免受Pb的毒害[88]。接种AMF促进超积累植物蟛蜞菊地上部Cd赋存形态由乙醇和去离子水提取态向醋酸态转化,增加了细胞壁中Cd的含量,使Cd的毒性降低[41]。
(4) 诱导基因表达
Leung等[8]发现,接种AMF通过增加砷酸还原酶的合成来提高蜈蚣草对As的吸收。随着蛋白质组学分析技术的发展,研究者发现重金属胁迫下,AMF可能通过调控超积累植物体内某些蛋白质的合成来缓解重金属毒害。Bona等[66]利用蛋白质组学方法对AMF和蜈蚣草共生体系进行分析,图像显示存在37个差异表达蛋白点,其中21个被成功鉴定。As胁迫影响其中14个点(12个上调,2个下调),在摩西斗管囊霉存在时仅1个点上调、2个点下调;而在无As处理时接种摩西斗管囊霉影响17个点,其中13个上调,4个下调,说明AMF能够调控蛋白质的合成提高蜈蚣草耐As能力。Wang等[68]利用实时荧光定量PCR技术研究发现,AMF可以增加超积累植物叶片FeSOD和Cu/ZnSOD基因的表达水平,降低CAT2基因的水平,进而调节植物抗氧化酶,提高植物耐受能力。金属硫蛋白(Metallothionein,MT) 与重金属结合能减少游离态离子对细胞的损伤,接种AMF能通过上调MT2b来激活毛果杨Populus trichocarpa的解毒防御系统,保护植物免受Zn、Cd的伤害[89]。与重金属转运有关的基因表达水平一定程度上决定了植物吸收、转运微量元素的能力[83]。接种根内根孢囊霉显著降低转运蛋白基因MsIRT1和MsNRAMP1的表达,导致Cd向地上部的转移能力下降[90]。
(5) 改善菌根围理化与生物条件
AMF通过根系分泌物的形成改变根围pH、养分有效性和微生物群落结构等菌根围的微环境,影响重金属在土壤中的赋存形态、生物有效性和移动性[91-92]。Wang等[5]发现AMF可以促进龙葵根围土壤重金属形态由非活性态(可还原态和残渣态) 向活性态(弱酸提取态) 转化,生物有效态Cd浓度增加26.2%,这种作用机制可能是菌根分泌物活化了土壤中的重金属。王发园等[7]研究表明Cu胁迫处理下菌根诱导的根围pH变化对海州香薷吸收Cu可能存在较大影响。Hu等[57]发现接种AMF增加了东南景天根围pH,导致土壤可提取态Cd浓度减少21%–38%,因此对植物地上部Cd浓度没有显著影响。接种AMF可以通过提高pH来增加蜈蚣草菌根围有效As含量[58]。接种AMF使蜈蚣草根围土壤中Ca结合态As大量减少,而可供植物吸收的Fe和Al结合态As显著增加,导致As的转运系数和地上部As的积累均显著加[61]。植物-AMF共生能够影响根系有机酸的分泌,有机酸能活化难溶态重金属,接种AMF增加了蜈蚣草根围有机酸含量,改善了蜈蚣草耐As能力,增加了As的吸收[93]。根际微生物具有改变重金属有效性的潜力,AMF通过增加根围土壤放线菌的丰度来降低土壤Cd的有效性,进而降低植物体内Cd的吸收积累[92]。
(6) 改变寄主空间构型
根系是植物与生长环境进行物质交换的主要界面,根系形态的可塑性是体现吸收功能的重要因素之一,在超积累植物吸收积累重金属中起重要作用[94]。如龙葵根系总根长和细根长与地上部Cd的浓度呈正相关[56]。重金属胁迫对根系的生长和构型产生负面影响,而AMF侵染植物根系使寄主植物根系生物量、根长、根表面积和根密度等发生变化[56, 95-96],这很有可能是影响超积累植物吸收转运重金属的一个机制。同时AMF定殖根系能扩大吸收面积,伸展到植物根系无法接触到的空间,加上AMF根外菌丝具有吸收重金属并将其转运至植物各器官的能力,因此接种AMF能增加植物对重金属的吸收[3, 29]。接种AMF增加了蜈蚣草根长和根表面积[62],增加了对As的吸收。AMF对寄主植物的生长不只是单纯的整体促进作用,而是改变了元素吸收的固定对策,寄主植物呈现异速生长,空间构型(根冠比) 等发生明显变化。对重金属元素的吸收提取也不是简单的等倍稀释、累积过程,而是有策略的主动运输、积累或有方向性的固定。Wang等[5]研究发现接种AMF增加了龙葵生物量向地上部分配,因此降低了重金属向地上的分配系数(生长稀释效应)。
5 超积累植物+AMF共生体系在重金属污染生境中的应用当前超积累植物+AMF共生联合修复试验多在实验室开展,少有工程案例。林先贵等[51]利用田间试验发现蜜色无梗囊霉Acaulospora mellea使伴矿景天地上部对Cd的提取量提高了75%。Wang等[97]在5个月的田间修复试验中发现,接种AMF使海州香薷地上部Cu提取量提高了98%。Cantamessa等[65]将蜈蚣草+AMF成功地应用到As污染严重的工业场地,原位修复3年,场地As含量降低至安全标准。植物提取的重金属受到植物根系延伸深度的限制,适合于土壤浅层修复,修复深度不佳。而AMF扩大了植物根系吸收重金属的区域,可进一步对深层土壤进行修复。Matzen等[98]利用58周原位场地试验,发现AMF接种既能保证高修复效率又能大大缩短修复时间,还能对深层土壤进行有效修复。此外,将超积累植物与适应特定金属的AMF进行优化组合,可以为植物在极端污染条件下的生长提供显著的优势,是植物采矿技术的前提[67]。田间条件下,Ni超积累植物Berkheya coddii能与AMF共生,且AMF侵染的植物能更好地存活和生长,加快了植物采矿进程[33]。
6 总结与展望从重金属去除角度考虑,生物修复效果主要取决于修复植物对重金属的绝对吸收量。植物的生长与其对重金属的耐受性和矿质营养吸收密切相关,而重金属吸收取决于土壤中重金属生物有效性及植物转运重金属的能力。由于土壤中重金属的溶解性和有效性较低,植物可获得的重金属含量受到限制。同时,大多数超积累植物具有对环境及地域的选择性,适应极端复杂环境的能力较差。单纯依靠超积累植物对污染土壤进行修复会面临各种挑战,工程应用很难实践。AMF协同超积累植物可弥补单一修复的缺陷,增强修复效率(表 3)。修复植物生物量的处理放置也是一个非常令人关注的问题,从经济角度考虑,提高地上部重金属浓度比生物量更具优势,因为生物量增加,会使后续富集植物生物质无害化、资源化的处理成本增加[2]。
需要指出的是,植物修复工程不能只考虑对污染元素的去除效应而忽略对土壤生态系统的影响[68]。植物修复的最终目的是稳步提高土壤肥力,恢复污染土壤的健康,支持修复后作物可持续生产,因此在评价植物修复效果时需要考虑土壤质量的综合评价[99]。单独种植超积累植物使得土壤中养分大量流失,后续如果要种植作物,一般要施肥,化肥的施用又带来了重金属输入的风险。而留在土壤中的AMF可作为有效的生物肥料使用,可消除或减少对化肥的需求,从而有助于恢复受干扰的生态系统。与超积累植物单独种植相比,AMF增加了土壤酶的活性,恢复了土壤微生物活性,使得土壤速效养分恢复至污染前水准[68]。
鉴于以上这些益处,菌根修复技术在重金属污染环境领域的应用未来可期。但由于超积累植物+AMF共生体联合吸收累积重金属的效应呈现多样性,其作用机制也尚未弄清,导致其实际应用于重金属污染土壤原位修复的难度很大。针对当前关于超积累植物与AMF的互作研究存在不足的问题,未来应深入开展以下几方面的工作。
(1) 世界范围内在筛选超积累植物方面作了大量工作,目前报道的超积累植物已有700多种,而超积累植物+AMF共生研究尚不足4%,忽视了该共生联合体在重金属污染土壤生态修复中可能发挥的巨大作用。未来应关注超积累植物与AMF之间的相互作用,对于强化生物修复效果具有重要的理论意义。
(2) 有关AMF驱动超积累植物生产力和微量元素吸收方面的分子学机制尚缺乏系统探究。应充分利用组学、实时射线成像、同步辐射、荧光探针、非损伤微测等新技术,深入研究污染生境中AMF对寄主植物的保护效应及关键机制,阐明重金属在AMF介导的土壤-超积累植物系统中的生物地球化学过程,为AMF强化超积累植物修复微量元素污染土壤的应用提供科学依据。
(3) 深入开展菌根技术对重金属修复产生积极作用的条件和范围,筛选出面向工程应用的超积累植物+AMF共生联合修复体系。尽管共生联合体表现出很好的生物修复效率,但需要合理选择,“一刀切”的方法是不合适的,必须考虑到不同的重金属污染生境下即使是同样的组合也会表现出不同的效应。同时,当前的研究主要是通过室内可控条件下得出的超积累植物+AMF在植物修复中产生的联合效应,而盆栽试验条件与自然污染区有很大差异,产生的菌根效应可能有所不同。如在自然污染区超积累植物美洲商陆[43]、东南景天[50]、海州香薷[100]吸收重金属与AMF的侵染没有相关性。未来应进一步开展场地试验,研究菌根体系发挥功能的最优条件,将盆栽试验效果显著的真菌+植物组合应用到自然实际污染土壤中进行科学验证,构建最佳修复模式。
(4) 自然界中菌根共生是一种普遍现象,但大部分超积累植物是非菌根型寄主,或对其共生依赖度异质性高,缺少人工干扰的自然生态系统中AMF侵染率往往处于较低水平,而侵染定殖数量较少一般会削弱菌根生理生态功能。在实际污染土壤中,微生物、动物和植物是彼此不可分割、密切联系的生态网络[101],笔者最近研究发现,蚯蚓在土壤生态系统中的行为干扰可作为一种拟自然促进菌根侵染的有效方法[5]。因此,超积累植物+AMF+土壤动物复合共生体系的协同修复技术将是未来污染土壤生物修复的研究前沿和热点。
参考文献
[1] | Suman J, Uhlik O, Viktorova J, et al. Phytoextraction of heavy metals: a promising tool for clean-up of polluted environment?. Front Plant Sci, 2018, 9: 1476. DOI:10.3389/fpls.2018.01476 |
[2] | Ali H, Khan E, Sajad MA. Phytoremediation of heavy metals — concepts and applications. Chemosphere, 2013, 91(7): 869-881. DOI:10.1016/j.chemosphere.2013.01.075 |
[3] | Liu H, Yuan M, Tan SY, et al. Enhancement of arbuscular mycorrhizal fungus (Glomus versiforme) on the growth and Cd uptake by Cd-hyperaccumulator Solanum nigrum. Appl Soil Ecol, 2015, 89: 44-49. DOI:10.1016/j.apsoil.2015.01.006 |
[4] | 刘志培, 刘双江. 我国污染土壤生物修复技术的发展及现状. 生物工程学报, 2015, 31(6): 901-916. Liu ZP, Liu SJ. Development of bioremediation in China — a review. Chin J Biotech, 2015, 31(6): 901-916 (in Chinese). |
[5] | Wang G, Wang L, Ma F, et al. Integration of earthworms and arbuscular mycorrhizal fungi into phytoremediation of cadmium-contaminated soil by Solanum nigrum L. J Hazard Mater, 2020, 389: 121873. DOI:10.1016/j.jhazmat.2019.121873 |
[6] | Li H, Li X, Xiang L, et al. Phytoremediation of soil co-contaminated with Cd and BDE-209 using hyperaccumulator enhanced by AM fungi and surfactant. Sci Total Environ, 2018, 613/614: 447-455. DOI:10.1016/j.scitotenv.2017.09.066 |
[7] | 王发园, 林先贵, 尹睿. 丛枝菌根真菌对海州香薷生长及其Cu吸收的影响. 环境科学, 2005, 26(5): 174-180. Wang FY, Lin XG, Yin R. Influence of arbuscular mycorrhizal fungi on growth and Cu uptake of Elsholtzia splendens. Environ Sci, 2005, 26(5): 174-180 (in Chinese). DOI:10.3321/j.issn:0250-3301.2005.05.035 |
[8] | Leung HM, Leung AO, Ye ZH, et al. Mixed arbuscular mycorrhizal (AM) fungal application to improve growth and arsenic accumulation of Pteris vittata (As hyperaccumulator) grown in As-contaminated soil. Chemosphere, 2013, 92(10): 1367-1374. DOI:10.1016/j.chemosphere.2013.04.093 |
[9] | Miransari M. Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnol Adv, 2011, 29(6): 645-653. DOI:10.1016/j.biotechadv.2011.04.006 |
[10] | Jaffre T, Brooks RR, Lee J, et al. Sebertia acuminata: a hyperaccumulator of nickel from new Caledonia. Science, 1976, 193(4253): 579-580. DOI:10.1126/science.193.4253.579 |
[11] | 陈同斌, 阎秀兰, 廖晓勇, 等. 关于hyperaccumulator中文译名的探讨. 环境科学学报, 2005, 25(9): 1148-1150. Chen TB, Yan XL, Liao XY, et al. Perspective on the translation of the English term "hyperaccumulator" into Chinese. Acta Sci Circumstantiae, 2005, 25(9): 1148-1150 (in Chinese). DOI:10.3321/j.issn:0253-2468.2005.09.002 |
[12] | 骆永明, 吴龙华, 胡鹏杰, 等. 锌镉污染土壤的超积累植物修复研究. 北京: 科学出版社, 2015: 1-2. Luo YM, Wu LH, Hu PJ, et al. Research on hyperaccumulating plants for phytoremediation of zinc and cadmium contaminated soil. Beijing: Science Press, 2015: 1-2 (in Chinese). |
[13] | Baker AJM, Brooks RR. Terrestrial higher plants which hyperaccumulate metal elements: a review of their distribution, ecology and phytochemistry. Biorecovery, 1989, 1: 81-126. |
[14] | van der Ent A, Baker AJM, Reeves RD, et al. Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil, 2013, 362(1/2): 319-334. |
[15] | Reeves RD, Baker AJM, Jaffré T, et al. A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytol, 2018, 218(2): 407-411. DOI:10.1111/nph.14907 |
[16] | Li JT, Gurajala HK, Wu LH, et al. Hyperaccumulator plants from China: a synthesis of the current state of knowledge. Environ Sci Technol, 2018, 52(21): 11980-11994. DOI:10.1021/acs.est.8b01060 |
[17] | 薛生国, 陈英旭, 林琦, 等. 中国首次发现的锰超积累植物——商陆. 生态学报, 2003, 23(5): 935-937. Xue SG, Chen YX, Lin Q, et al. Phytolacca acinosa Roxb. (Phytolaccaceae): a new manganese hyperaccumulator plant from Southern China. Acta Ecol Sin, 2003, 23(5): 935-937 (in Chinese). DOI:10.3321/j.issn:1000-0933.2003.05.014 |
[18] | Yuan L, Zhu Y, Lin ZQ, et al. A novel selenocystine-accumulating plant in selenium-mine drainage area in Enshi, China. PLoS ONE, 2013, 8(6): e65615. DOI:10.1371/journal.pone.0065615 |
[19] | Yang XE, Long XX, Ni WZ, et al. Sedum alfredii H: a new Zn hyperaccumulating plant first found in China. Chin Sci Bull, 2002, 47(19): 1634-1637. DOI:10.1007/BF03184113 |
[20] | Liu W, Shu WS, Lan CY. Viola baoshanensis, a plant that hyperaccumulates cadmium. Chin Sci Bull, 2004, 49(1): 29-32. DOI:10.1007/BF02901739 |
[21] | Tang YT, Qiu RL, Zeng XW, et al. Lead, zinc, cadmium hyperaccumulation and growth stimulation in Arabis paniculata Franch. Environ Exp Bot, 2009, 66(1): 126-134. DOI:10.1016/j.envexpbot.2008.12.016 |
[22] | Chen TB, Wei CY, Huang ZC, et al. Arsenic hyperaccumulator Pteris Vittata L. and its arsenic accumulation. Chin Sci Bull, 2002, 47(11): 902-905. DOI:10.1360/02tb9202 |
[23] | Shan XQ, Wang HO, Zhang SZ, et al. Accumulation and uptake of light rare earth elements in a hyperaccumulator Dicropteris dichotoma. Plant Sci, 2003, 165(6): 1343-1353. DOI:10.1016/S0168-9452(03)00361-3 |
[24] | Zhang XH, Liu J, Huang HT, et al. Chromium accumulation by the hyperaccumulator plant Leersia hexandra Swartz. Chemosphere, 2007, 67(6): 1138-1143. DOI:10.1016/j.chemosphere.2006.11.014 |
[25] | Liu Z, He X, Chen W, et al. Accumulation and tolerance characteristics of cadmium in a potential hyperaccumulator — Lonicera japonica Thunb. J Hazard Mater, 2009, 169(1/2/3): 170-175. |
[26] | Zhao FJ, Lombi E, Breedon T, et al. Zinc hyperaccumulation and cellular distribution in Arabidopsis halleri. Plant Cell Environ, 2000, 23(5): 507-514. DOI:10.1046/j.1365-3040.2000.00569.x |
[27] | Huang D, Wang Q, Zou YJ, et al. Silencing MdGH3-2/12 in apple reduces cadmium resistance via the regulation of AM colonization. Chemosphere, 2021, 269: 129407. DOI:10.1016/j.chemosphere.2020.129407 |
[28] | Dhalaria R, Kumar D, Kumar H, et al. Arbuscular mycorrhizal fungi as potential agents in ameliorating heavy metal stress in plants. Agronomy, 2020, 10(6): 815. DOI:10.3390/agronomy10060815 |
[29] | Tiwari J, Ma Y, Bauddh K. Arbuscular mycorrhizal fungi: an ecological accelerator of phytoremediation of metal contaminated soils. Arch Agron Soil Sci, 2020, 1-14. |
[30] | Vogel-Mikus K, Pongrac P, Kump P, et al. Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungal mixture induces changes in heavy metal and nutrient uptake. Environ Pollut, 2006, 139(2): 362-371. DOI:10.1016/j.envpol.2005.05.005 |
[31] | Alford ER, Pilon-Smits EAH, Paschke MW. Metallophytes — a view from the rhizosphere. Plant Soil, 2010, 337(1/2): 33-50. |
[32] | Audet P. Examining the ecological paradox of the 'mycorrhizal-metal-hyperaccumulators'. Arch Agron Soil Sci, 2013, 59(4): 549-558. DOI:10.1080/03650340.2012.658378 |
[33] | Turnau K, Mesjasz-Przybylowicz J. Arbuscular mycorrhiza of Berkheya coddii and other Ni-hyperaccumulating members of Asteraceae from ultramafic soils in South Africa. Mycorrhiza, 2003, 13(4): 185-190. DOI:10.1007/s00572-002-0213-6 |
[34] | Perrier N, Amir H, Colin F. Occurrence of mycorrhizal symbioses in the metal-rich lateritic soils of the Koniambo Massif, new Caledonia. Mycorrhiza, 2006, 16(7): 449-458. DOI:10.1007/s00572-006-0057-6 |
[35] | Amir H, Perrier N, Rigault F, et al. Relationships between Ni-hyperaccumulation and mycorrhizal status of different endemic plant species from new Caledonian ultramafic soils. Plant Soil, 2007, 293(1/2): 23-35. |
[36] | Marques APGC, Oliveira RS, Samardjieva KA, et al. Solanum nigrum grown in contaminated soil: effect of arbuscular mycorrhizal fungi on zinc accumulation and histolocalisation. Environ Pollut, 2007, 145(3): 691-699. DOI:10.1016/j.envpol.2006.06.029 |
[37] | Tan SY, Jiang QY, Zhuo F, et al. Effect of inoculation with Glomus versiforme on cadmium accumulation, antioxidant activities and phytochelatins of Solanum photeinocarpum. PLoS ONE, 2015, 10(7): e0132347. DOI:10.1371/journal.pone.0132347 |
[38] | Jiang QY, Zhuo F, Long SH, et al. Can arbuscular mycorrhizal fungi reduce Cd uptake and alleviate Cd toxicity of Lonicera japonica grown in Cd-added soils?. Sci Rep, 2016, 6: 21805. DOI:10.1038/srep21805 |
[39] | Zhong WL, Li JT, Chen YT, et al. A study on the effects of lead, cadmium and phosphorus on the lead and cadmium uptake efficacy of Viola baoshanensis inoculated with arbuscular mycorrhizal fungi. J Environ Monit, 2012, 14(9): 2497-2504. DOI:10.1039/c2em30333g |
[40] | Kuo HC, Juang DF, Yang L, et al. Phytoremediation of soil contaminated by heavy oil with plants colonized by mycorrhizal fungi. Int J Environ Sci Technol, 2014, 11(6): 1661-1668. DOI:10.1007/s13762-013-0353-6 |
[41] | Lu RR, Hu ZH, Zhang QL, et al. The effect of Funneliformis mosseae on the plant growth, Cd translocation and accumulation in the new Cd-hyperaccumulator Sphagneticola calendulacea. Ecotoxicol Environ Saf, 2020, 203: 110988. DOI:10.1016/j.ecoenv.2020.110988 |
[42] | Li JM, Liang HJ, Yan M, et al. Arbuscular mycorrhiza fungi facilitate rapid adaptation of Elsholtzia splendens to copper. Sci Total Environ, 2017, 599/600: 1462-1468. DOI:10.1016/j.scitotenv.2017.05.063 |
[43] | Wei Y, Hou H, Li JN, et al. Molecular diversity of arbuscular mycorrhizal fungi associated with an Mn hyperaccumulator — Phytolacca americana, in Mn mining area. Appl Soil Ecol, 2014, 82: 11-17. DOI:10.1016/j.apsoil.2014.05.005 |
[44] | Or?owska E, Zubek S, Jurkiewicz A, et al. Influence of restoration on arbuscular mycorrhiza of Biscutella laevigata L. (Plantaginaceae) from calamine spoil mounds. Mycorrhiza, 2002, 12(3): 153-159. DOI:10.1007/s00572-001-0155-4 |
[45] | Anjum T, Javaid A, Sh ah, M, et al. Correlation between plant growth and arbuscular mycorrhizal colonization in some rainy season grasses. Pak J Bot, 2006, 38(3): 843-849. |
[46] | Alejandro-Córdova A, Rivera-Cruz MC, Hernández-Cuevas LV, et al. Responses of arbuscular mycorrhizal fungi and grass Leersia hexandra swartz exposed to soil with crude oil. Water Air Soil Pollut, 2017, 228(2): 1-12. |
[47] | Fernández FO, Carrillo-González R, Vangrosveld J, et al. Arbuscular mycorrhizal fungi and Zn accumulation in the metallophytic plant Viola calaminaria (Gingins.) Lej. Rev Chapingo Ser Hortic, 2009, 14(3): 355-360. |
[48] | Trotta A, Falaschi P, Cornara L, et al. Arbuscular mycorrhizae increase the arsenic translocation factor in the As hyperaccumulating fern Pteris vittata L. Chemosphere, 2006, 65(1): 74-81. DOI:10.1016/j.chemosphere.2006.02.048 |
[49] | Jankong P, Visoottiviseth P. Effects of arbuscular mycorrhizal inoculation on plants growing on arsenic contaminated soil. Chemosphere, 2008, 72(7): 1092-1097. DOI:10.1016/j.chemosphere.2008.03.040 |
[50] | Wu FY, Ye ZH, Wu SC, et al. Metal accumulation and arbuscular mycorrhizal status in metallicolous and nonmetallicolous populations of Pteris vittata L. and Sedum alfredii Hance. Planta, 2007, 226(6): 1363-1378. DOI:10.1007/s00425-007-0575-2 |
[51] | 林先贵, 朱清禾, 曾军, 等. 一种利用丛枝菌根真菌联合伴矿景天修复镉污染农田土壤的方法: 中国, 201510065503.1, 2015-05-13. Lin XG, Zhu QH, Zeng J, et al. A method for remediation of cadmium contaminated farmland soil by arbuscular mycorrhizal fungi combined with Sedum plumbizincicola: CN, 201510065503.1, 2015-05-13 (in Chinese). |
[52] | Vogel-Mikus K, Drobne D, Regvar M. Zn, Cd and Pb accumulation and arbuscular mycorrhizal colonisation of pennycress Thlaspi praecox Wulf. (Brassicaceae) from the vicinity of a lead mine and smelter in Slovenia. Environ Pollut, 2005, 133(2): 233-242. DOI:10.1016/j.envpol.2004.06.021 |
[53] | Lu X, Tao TT, Hu WY, et al. Accumulation and transfer of cadmium isotope (112Cd) by Sonchus asper intercropped with Vicia faba and implications for phytoremediation. Bull Environ Contam Toxicol, 2021, 1-6. DOI:10.1007/s00128-021-03126-6 |
[54] | 卢鑫, 胡文友, 黄标, 等. 丛枝菌根真菌对玉米和续断菊间作镉吸收和累积的影响. 土壤, 2017, 49(1): 111-117. Lu X, Hu WY, Huang B, et al. Effects of arbuscular mycorrhizal fungi(AMF) on Cd absorption and accumulation in maize and Sonchus asper L. hill using intercropping system. Soils, 2017, 49(1): 111-117 (in Chinese). |
[55] | Jiang QY, Tan SY, Zhuo F, et al. Effect of Funneliformis mosseae on the growth, cadmium accumulation and antioxidant activities of Solanum nigrum. Appl Soil Ecol, 2016, 98: 112-120. DOI:10.1016/j.apsoil.2015.10.003 |
[56] | Yang X, Qin JH, Li JC, et al. Upland rice intercropping with Solanum nigrum inoculated with arbuscular mycorrhizal fungi reduces grain Cd while promoting phytoremediation of Cd-contaminated soil. J Hazard Mater, 2021, 406: 124325. DOI:10.1016/j.jhazmat.2020.124325 |
[57] | Hu JL, Wu SC, Wu FY, et al. Arbuscular mycorrhizal fungi enhance both absorption and stabilization of Cd by Alfred stonecrop (Sedum alfredii Hance) and perennial ryegrass (Lolium perenne L.) in a Cd-contaminated acidic soil. Chemosphere, 2013, 93(7): 1359-1365. DOI:10.1016/j.chemosphere.2013.07.089 |
[58] | Liu Y, Zhu YG, Chen BD, et al. Influence of the arbuscular mycorrhizal fungus Glomus mosseae on uptake of arsenate by the As hyperaccumulator fern Pteris vittata L. Mycorrhiza, 2005, 15(3): 187-192. DOI:10.1007/s00572-004-0320-7 |
[59] | Leung HM, Ye ZH, Wong MH. Interactions of mycorrhizal fungi with Pteris vittata (As hyperaccumulator) in As-contaminated soils. Environ Pollut, 2006, 139(1): 1-8. DOI:10.1016/j.envpol.2005.05.009 |
[60] | Al Agely A, Sylvia DM, Ma LQ. Mycorrhizae increase arsenic uptake by the hyperaccumulator Chinese brake fern (Pteris vittata L.). J Environ Qual, 2005, 34(6): 2181-2186. DOI:10.2134/jeq2004.0411 |
[61] | Leung HM, Wu FY, Cheung KC, et al. Synergistic effects of arbuscular mycorrhizal fungi and phosphate rock on heavy metal uptake and accumulation by an arsenic hyperaccumulator. J Hazard Mater, 2010, 181(1/2/3): 497-507. |
[62] | Leung HM, Wu FY, Cheung KC, et al. The effect of arbuscular mycorrhizal fungi and phosphate amendement on arsenic uptake, accumulation and growth of Pteris vittata in As-contaminated soil. Int J Phytoremediation, 2010, 12(4): 384-403. DOI:10.1080/15226510903051740 |
[63] | Liu Y, Christie P, Zhang JL, et al. Growth and arsenic uptake by Chinese brake fern inoculated with an arbuscular mycorrhizal fungus. Environ Exp Bot, 2009, 66(3): 435-441. DOI:10.1016/j.envexpbot.2009.03.002 |
[64] | Chen BD, Zhu YG, Smith FA. Effects of arbuscular mycorrhizal inoculation on uranium and arsenic accumulation by Chinese brake fern (Pteris vittata L.) from a uranium mining-impacted soil. Chemosphere, 2006, 62(9): 1464-1473. DOI:10.1016/j.chemosphere.2005.06.008 |
[65] | Cantamessa S, Massa N, Gamalero E, et al. Phytoremediation of a highly arsenic polluted site, using Pteris vittata L. and arbuscular mycorrhizal fungi. Plants, 2020, 9(9): 1211. DOI:10.3390/plants9091211 |
[66] | Bona E, Marsano F, Massa N, et al. Proteomic analysis as a tool for investigating arsenic stress in Pteris vittata roots colonized or not by arbuscular mycorrhizal symbiosis. J Proteomics, 2011, 74(8): 1338-1350. DOI:10.1016/j.jprot.2011.03.027 |
[67] | Or?owska E, Przyby?owicz W, Orlowski D, et al. The effect of mycorrhiza on the growth and elemental composition of Ni-hyperaccumulating plant Berkheya coddii Roessler. Environ Pollut, 2011, 159(12): 3730-3738. DOI:10.1016/j.envpol.2011.07.008 |
[68] | Wang G, Wang L, Ma F, et al. Earthworm and arbuscular mycorrhiza interactions: strategies to motivate antioxidant responses and improve soil functionality. Environ Pollut, 2021, 272: 115980. DOI:10.1016/j.envpol.2020.115980 |
[69] | 王穗子, 金则新, 李月灵, 等. 铜胁迫条件下AMF对海州香薷光合色素含量、抗氧化能力和膜脂过氧化的影响. 生态学报, 2015, 35(23): 7699-7708. Wang SZ, Jin ZX, Li YL, et al. Effects of arbuscular mycorrhizal fungi inoculation on the photosynthetic pigment contents, anti-oxidation capacity and membrane lipid peroxidation of Elsholtzia splendens leaves under copper stress. Acta Ecol Sin, 2015, 35(23): 7699-7708 (in Chinese). |
[70] | Cecilia Fernández M, Hernán Gutiérrez Boem F, Rubio G. Effect of indigenous mycorrhizal colonization on phosphorus-acquisition efficiency in soybean and sunflower. J Plant Nutr Soil Sci, 2011, 174(4): 673-677. DOI:10.1002/jpln.201000109 |
[71] | Audet P, Charest C. Dynamics of arbuscular mycorrhizal symbiosis in heavy metal phytoremediation: meta-analytical and conceptual perspectives. Environ Pollut, 2007, 147(3): 609-614. DOI:10.1016/j.envpol.2006.10.006 |
[72] | Chen BD, Xiao XY, Zhu YG, et al. The arbuscular mycorrhizal fungus Glomus mosseae gives contradictory effects on phosphorus and arsenic acquisition by Medicago sativa Linn. Sci Total Environ, 2007, 379(2/3): 226-234. |
[73] | Zhan FD, Li B, Jiang M, et al. Effects of arbuscular mycorrhizal fungi on the growth and heavy metal accumulation of bermudagrass[Cynodon dactylon (L.) Pers.] grown in a lead-zinc mine wasteland. Int J Phytoremediation, 2019, 21(9): 849-856. DOI:10.1080/15226514.2019.1577353 |
[74] | Marques APGC, Oliveira RS, Rangel AOSS, et al. Zinc accumulation in Solanum nigrum is enhanced by different arbuscular mycorrhizal fungi. Chemosphere, 2006, 65(7): 1256-1263. DOI:10.1016/j.chemosphere.2006.03.022 |
[75] | Gil-Cardeza ML, Calonne-Salmon M, Gómez E, et al. Short-term chromium (Ⅵ) exposure increases phosphorus uptake by the extraradical mycelium of the arbuscular mycorrhizal fungus Rhizophagus irregularis MUCL 41833. Chemosphere, 2017, 187: 27-34. DOI:10.1016/j.chemosphere.2017.08.079 |
[76] | Janeeshma E, Puthur JT. Direct and indirect influence of arbuscular mycorrhizae on enhancing metal tolerance of plants. Arch Microbiol, 2020, 202(1): 1-16. DOI:10.1007/s00203-019-01730-z |
[77] | Salazar MJ, Menoyo E, Faggioli V, et al. Pb accumulation in spores of arbuscular mycorrhizal fungi. Sci Total Environ, 2018, 643: 238-246. DOI:10.1016/j.scitotenv.2018.06.199 |
[78] | Aalipour H, Nikbakht A, Etemadi N. Physiological response of Arizona cypress to Cd-contaminated soil inoculated with arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria. Rhizosphere, 2021, 18: 100354. DOI:10.1016/j.rhisph.2021.100354 |
[79] | Malekzadeh E, Aliasgharzad N, Majidi J, et al. Contribution of glomalin to Pb sequestration by arbuscular mycorrhizal fungus in a sand culture system with clover plant. Eur J Soil Biol, 2016, 74: 45-51. DOI:10.1016/j.ejsobi.2016.03.003 |
[80] | González-Villalobos MA, Martínez-Trinidad T, Alarcón A, et al. Growth and lead uptake by Parkinsonia aculeata L. inoculated with Rhizophagus intraradices. Int J Phytoremediation, 2021, 23(3): 272-278. DOI:10.1080/15226514.2020.1812506 |
[81] | Adeyemi NO, Atayese MO, Sakariyawo OS, et al. Arbuscular mycorrhizal fungi species differentially regulate plant growth, phosphorus uptake and stress tolerance of soybean in lead contaminated soil. J Plant Nutr, 2021, 44(11): 1633-1648. |
[82] | Garcia KGV, Mendes Filho PF, Pinheiro JI, et al. Attenuation of manganese-induced toxicity in Leucaena leucocephala colonized by arbuscular mycorrhizae. Water Air Soil Pollut, 2020, 231(1): 22. DOI:10.1007/s11270-019-4381-9 |
[83] | Shabani L, Sabzalian MR, Mostafavi pour S. Arbuscular mycorrhiza affects nickel translocation and expression of ABC transporter and metallothionein genes in Festuca arundinacea. Mycorrhiza, 2016, 26(1): 67-76. DOI:10.1007/s00572-015-0647-2 |
[84] | Huang XC, Wang L, Ma F. Arbuscular mycorrhizal fungus modulates the phytotoxicity of Cd via combined responses of enzymes, thiolic compounds, and essential elements in the roots of Phragmites australis. Chemosphere, 2017, 187: 221-229. DOI:10.1016/j.chemosphere.2017.08.021 |
[85] | Li H, Chen XW, Wu L, et al. Effects of arbuscular mycorrhizal fungi on redox homeostasis of rice under Cd stress. Plant Soil, 2020, 455(1/2): 121-138. |
[86] | Hu SS, Hu B, Chen ZB, et al. Antioxidant response in arbuscular mycorrhizal fungi inoculated wetland plant under Cr stress. Environ Res, 2020, 191: 110203. DOI:10.1016/j.envres.2020.110203 |
[87] | Fatemi H, Esmaielpour B, Sefidkon F, et al. How mycorrhiza symbiosis help coriander (Coriandrum sativum L. ) plants grow better under contaminated soil?. J Plant Nutr, 2020, 43(13): 2040-2053. |
[88] | Zhang XY, Hu WT, Xie XN, et al. Arbuscular mycorrhizal fungi promote lead immobilization by increasing the polysaccharide content within pectin and inducing cell wall peroxidase activity. Chemosphere, 2021, 267: 128924. DOI:10.1016/j.chemosphere.2020.128924 |
[89] | De Oliveira VH, Ullah I, Dunwell JM, et al. Mycorrhizal symbiosis induces divergent patterns of transport and partitioning of Cd and Zn in Populus trichocarpa. Environ Exp Bot, 2020, 171: 103925. DOI:10.1016/j.envexpbot.2019.103925 |
[90] | Motaharpoor Z, Taheri H, Nadian H. Rhizophagus irregularis modulates cadmium uptake, metal transporter, and chelator gene expression in Medicago sativa. Mycorrhiza, 2019, 29(4): 389-395. DOI:10.1007/s00572-019-00900-7 |
[91] | Riaz M, Kamran M, Fang Y, et al. Arbuscular mycorrhizal fungi-induced mitigation of heavy metal phytotoxicity in metal contaminated soils: a critical review. J Hazard Mater, 2021, 402: 123919. DOI:10.1016/j.jhazmat.2020.123919 |
[92] | Chen XW, Wu L, Luo N, et al. Arbuscular mycorrhizal fungi and the associated bacterial community influence the uptake of cadmium in rice. Geoderma, 2019, 337: 749-757. DOI:10.1016/j.geoderma.2018.10.029 |
[93] | Liu YZ, Imtiaz M, Ditta A, et al. Response of growth, antioxidant enzymes and root exudates production towards As stress in Pteris vittata and in Astragalus sinicus colonized by arbuscular mycorrhizal fungi. Environ Sci Pollut Res, 2020, 27(2): 2340-2352. DOI:10.1007/s11356-019-06785-5 |
[94] | Wang Q, Ma LY, Zhou QY, et al. Inoculation of plant growth promoting bacteria from hyperaccumulator facilitated non-host root development and provided promising agents for elevated phytoremediation efficiency. Chemosphere, 2019, 234: 769-776. DOI:10.1016/j.chemosphere.2019.06.132 |
[95] | Huang L, Chen D, Zhang H, et al. Funneliformis mosseae enhances root development and Pb phytostabilization in Robinia pseudoacacia in Pb-contaminated soil. Front Microbiol, 2019, 10: 2591. DOI:10.3389/fmicb.2019.02591 |
[96] | Zhang QM, Gong MG, Liu KY, et al. Rhizoglomus intraradices improves plant growth, root morphology and phytohormone balance of Robinia pseudoacacia in arsenic-contaminated soils. Front Microbiol, 2020, 11: 1428. DOI:10.3389/fmicb.2020.01428 |
[97] | Wang FY, Lin XG, Yin R. Heavy metal uptake by arbuscular mycorrhizas of Elsholtzia splendens and the potential for phytoremediation of contaminated soil. Plant Soil, 2005, 269(1/2): 225-232. |
[98] | Matzen S, Fakra S, Nico P, et al. Pteris vittata arsenic accumulation only partially explains soil arsenic depletion during field-scale phytoextraction. Soil Syst, 2020, 4(4): 71. DOI:10.3390/soilsystems4040071 |
[99] | Xu L, Xing XY, Liang JN, et al. In situ phytoremediation of copper and cadmium in a co-contaminated soil and its biological and physical effects. RSC Adv, 2019, 9(2): 993-1003. DOI:10.1039/C8RA07645F |
[100] | Yang RY, Zan ST, Tang JJ, et al. Variation in community structure of arbuscular mycorrhizal fungi associated with a Cu tolerant plant — Elsholtzia splendens. Appl Soil Ecol, 2010, 44(3): 191-197. DOI:10.1016/j.apsoil.2009.12.005 |
[101] | 段桂兰, 崔慧灵, 杨雨萍, 等. 重金属污染土壤中生物间相互作用及其协同修复应用. 生物工程学报, 2020, 36(3): 455-470. Duan GL, Cui HL, Yang YP, et al. Interactions among soil biota and their applications in synergistic bioremediation of heavy-metal contaminated soils. Chin J Biotech, 2020, 36(3): 455-470 (in Chinese). |