删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

构建酿酒酵母细胞工厂高效合成摩尔酸

本站小编 Free考研考试/2021-12-26

构建酿酒酵母细胞工厂高效合成摩尔酸
高惠芳, 邵明龙, 周武林, 张显, 杨套伟, 徐美娟, 高晓冬, 饶志明
江南大学生物工程学院, 工业生物技术教育部重点实验室, 江苏 无锡 214122
收稿日期:2021-01-30;修回日期:2021-03-13;网络出版日期:2021-03-29
基金项目:国家重点研发计划(2019YFA0905300);国家自然科学基金(31700041);天津市合成生物技术创新能力提升行动项目(TSBICIP-KJGG-001-14);江苏省自然科学基金(BK20200618);江南大学基本科研计划青年基金(JUSRP12017)
*通信作者:高晓冬, E-mail: xdgao@jiangnan.edu.cn;
饶志明, Tel/Fax: +86-510-85916881, E-mail: raozhm@jiangnan.edu.cn.

摘要[目的] 摩尔酸作为齐墩果烷型三萜化合物具有抗HIV、抗炎等多种生物学活性,其前体物质是计曼尼醇,本研究基于合成生物学策略构建酿酒酵母细胞工厂高效合成摩尔酸。[方法] 运用CRISPR/Cas9技术,首先分别整合不同来源的氧化鲨烯环化酶(OSCs),筛选高产计曼尼醇底盘细胞;进一步异源表达长春花来源的细胞色素P450氧化酶(CYP716AL1)和麻风树来源的细胞色素P450还原酶(JcCPR),构建摩尔酸生物合成途径;并通过CYP716AL1和不同来源的CPR适配研究以及过表达甲羟戊酸(MVA)代谢途径中关键酶的方式提高摩尔酸的产量。[结果] 整合苹果来源的氧化鲨烯环化酶MdOSC获得的重组菌株计曼尼醇产量最高,达68.3 mg/L;以此为底盘细胞进一步整合CYP716AL1和JcCPR实现了摩尔酸的生物合成,产量为15.0 mg/L;共表达CYP716AL1和拟南芥来源的CPR获得的重组菌株摩尔酸产量最高,达到24.3 mg/L;最后过表达MVA代谢途径中的关键酶法呢基焦磷酸合酶(ERG20)和鲨烯环氧酶(ERG1),获得的重组菌株摩尔酸产量高达34.1 mg/L。[结论] 本研究实现了摩尔酸的高效生物合成,为构建高产齐墩果烷型三萜酿酒酵母细胞工厂提供了理论和技术依据。
关键词:三萜计曼尼醇摩尔酸合成生物学酿酒酵母
Efficient biosynthesis of morolic acid in Saccharomyces cerevisiae cell factories
Huifang Gao, Minglong Shao, Wulin Zhou, Xian Zhang, Taowei Yang, Meijuan Xu, Xiaodong Gao, Zhiming Rao
Key Laboratory of Industrical Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu Province, China
Received: 30 January 2021; Revised: 13 March 2021; Published online: 29 March 2021
*Corresponding author: Xiaodong Gao, E-mail: xdgao@jiangnan.edu.cn;
Zhiming Rao, Tel/Fax: +86-510-85916881, E-mail: raozhm@jiangnan.edu.cn.
Foundation item: Supported by the National Key R & D Program of China (2019YFA0905300), by the National Natural Science Foundation of China (31700041), by the Tianjin Synthetic Biotechnology Innovation Capacity Improvement Project (TSBICIP-KJGG-001-14), by the Natural Science Foundation of Jiangsu Province (BK20200618) and by the Jiangnan University Science Research Program (JUSRP12017)

Abstract: [Objective] Morolic acid is derived from germanicol, has excellent anti-HIV and anti-inflammatory activities properties as oleanane-type triterpenoid, thus their potential applications in the pharmaceutical industry. In this study, synthetic biology was used to construct Saccharomyces cerevisiae cell factories for efficient biosynthesis of morolic acid. [Methods] Firstly, using CRISPR/Cas9 technology, three oxidosqualene cyclases (OSCs), namely MdOSC, PbOSC and RcOSC were integrated into S. cerevisiae to screen for high yield germanicol chassis cells. Then, to construct the engineered strain capable of morolic acid production, the cytochrome P450 oxidase (CYP716AL1) derived from Catharanthus roseus and the cytochrome P450 reductase derived from Jatropha curcas (JcCPR) were further integrated into S. cerevisiae. Moreover, to improve morolic acid biosynthesis, the CYP716AL1 was coexpressed with CPRs (AtCPR, LjCPR, GuCPR and MtCPR) derived from different plants. Finally, the mevalonate (MVA) pathway was modified by overexpressing the key pathway enzymes to improve morolic acid production. [Results] The engineered strain S201 obtained by integrating oxidosqualene cyclase MdOSC from Malus domestica yielded the highest amount of germanicol of 68.3 mg/L. The engineered strain S401 obtained by integrating CYP716AL1 and JcCPR in S201 achieved biosynthesis of morolic acid, and the yield reached 15.0 mg/L. Furthermore, the CYP716AL1 was coexpressed with AtCPR from Arabidopsis thaliana in S201, resulting in engineered strain S402, which yielded the highest amount of morolic acid of 24.3 mg/L. Finally, overexpression of key enzymes in the metabolic pathway of MVA in engineered strain S402, FPP synthase (ERG20) and squalene epoxidase (ERG1), resulted in a morolic acid yield of 34.1 mg/L (S6). [Conclusion] In this study, morolic acid cell factories were successfully constructed, which provides a theoretical and technical basis for the construction of high-yield oleanane-type triterpenoids cell factories.
Keywords: triterpenoidsgermanicolmorolic acidsynthetic biologySaccharomyces cerevisiae
齐墩果烷型(oleanane-type)三萜化合物是一类植物次级代谢产物,包括β-香树脂醇(β-amyrin)、齐墩果酸(oleanolic acid)、甘草酸(glycyrrhizin)、计曼尼醇(germanicol)和摩尔酸(morolic acid)等一系列重要化合物[1],具有抗炎、抗氧化、抗肿瘤、保肝等功能,被广泛应用于医药、食品、农业和精细化工品行业,具有重要的应用价值。近些年来,国内外****围绕齐墩果烷型三萜类分子的药理学作用机制和新化合物结构发现与分析作了大量的研究,其中,齐墩果酸片和甘草酸类药物制剂已作为上市药物应用于肝炎的治疗。摩尔酸是计曼尼醇C-28位氧化产物,其氧化过程需要细胞色素P450 (CYP450)氧化酶的催化[2]。研究发现,摩尔酸具有抗HIV、抗HSV、抗炎和抗糖尿病等多种药理特性[3-4],具有很高的药用价值。目前,摩尔酸可从豆科植物中提取,但植物生长周期长,提取操作繁琐,对环境破坏较大,所以植物提取面临成本高产量低等问题,远远不能满足化工、制药等多个领域对摩尔酸的需求,限制了其工业化生产。近年来,随着合成生物学的快速发展,萜类化合物的异源生物合成成为研究热点。
酿酒酵母(Saccharomyces cerevisiae)遗传背景清晰,遗传操作技术成熟,具有良好的生物安全性,目前,已有一些通过构建酿酒酵母细胞工厂进行萜类化合物合成的例子[5-7]。Keasling研究组[8]以酿酒酵母为底盘细胞构建产青蒿素前体物青蒿酸的工程菌株,已达到25 g/L的产业化水平。李春团队[9]通过改造α-香树脂醇合酶MdOSC1并扩大其胞内贮存池,在酿酒酵母工程菌株中α-香树酯醇的产量实现1.1 g/L以上。另外,该团队[10]以合成β-香树脂醇的工程化酵母作为宿主,通过CYP450氧化酶和细胞色素P450还原酶(CPR)的适配研究,最终齐墩果烷型三萜甘草次酸产量高达18.9 mg/L。在酿酒酵母中,萜类化合物是经过甲羟戊酸途径(MVA)来合成的,其具体合成途径为:(1) 以MVA途径产生的异戊烯基焦磷酸(IPP)和二甲基烯丙基焦磷酸(DMAPP)为前体,在法呢基焦磷酸合酶(ERG20)的催化作用下生成法呢基焦磷酸(FPP);(2)法呢基焦磷酸在鲨烯合酶(ERG9)的催化作用下合成三萜通用前体鲨烯(squalene);(3)鲨烯进一步在鲨烯环氧酶(ERG1)的氧化下生成2, 3-氧化鲨烯(2, 3-oxidosqualene);(4) 2, 3-氧化鲨烯可被不同种类的氧化鲨烯环化酶催化生成各种类型的三萜母核;(5)三萜母核在CYP450氧化酶和CPR的作用下生成三萜酸类化合物(图 1)[11]
图 1 酿酒酵母重组菌株中摩尔酸生物合成途径 Figure 1 Morolic acid biosynthetic pathway in engineered S. cerevisiae. IPP: isopentenyl diphosphate; DMAPP: dimethylallyl diphosphate; FPP: farnesyl pyrophosphate; ERG20: FPP synthase; ERG9: squalene synthase; ERG1: squalene epoxidase; ERG7: lanosterol synthase; OSCs: oxidosqualene cyclases; CYP716AL1: cytochrome P450 oxidase; CPRs: cytochrome P450 reductases.
图选项





国内外针对摩尔酸微生物合成相关研究鲜有报道,Srisawat等[11]将来源于豆科(Bauhinia forficata)的氧化鲨烯环化酶BfOSC2和来源于甜菜(Beta vulgaris)的CYP450氧化酶CYP716A49用质粒在酿酒酵母中进行表达,最终摩尔酸的产量实现20.7 mg/L。本研究以Keasling教授惠赠的高效积累IPP和DMAPP的酿酒酵母菌株JWy601[12]为出发菌株。为构建得到产摩尔酸酿酒酵母重组菌株,首先通过检索NCBI数据库,筛选得到不同来源的氧化鲨烯环化酶,运用CRISPR/Cas9技术[13],把氧化鲨烯环化酶编码基因定点整合至酿酒酵母基因组上,获得高产计曼尼醇底盘细胞;在此基础上,整合长春花来源的CYP450氧化酶CYP716AL1和麻风树来源的JcCPR,构建得到摩尔酸生物合成途径;进一步通过CYP450氧化酶和不同来源的CPR适配研究提高摩尔酸产量;最后采用代谢工程的策略过表达MVA代谢途径中的关键酶ERG20和ERG1以提高酿酒酵母萜类产量。最终,本研究实现了摩尔酸的高效生物合成,为构建高产齐墩果烷型三萜酿酒酵母细胞工厂提供了理论和技术依据。
1 材料和方法 1.1 材料
1.1.1 菌株、质粒和培养基: 本研究所用菌株信息详见表 1。本研究所用质粒信息详见表 2。大肠杆菌生长用LB培养基:10 g/L蛋白胨,5 g/L酵母粉,10 g/L氯化钠;酿酒酵母筛选用尿嘧啶营养缺陷型培养基:7.9 g/L SC-URA培养基,20 g/L葡萄糖;酿酒酵母生长用YPD培养基:20 g/L蛋白胨,10 g/L酵母粉,20 g/L葡萄糖;酿酒酵母诱导用YPG培养基:20 g/L蛋白胨,10 g/L酵母粉,20 g/L半乳糖。配成固体培养基时向上述液体培养基加入2%的琼脂粉,培养大肠杆菌时向LB培养基中加入终浓度为100 μg/mL的氨苄青霉素(Amp)或50 μg/mL的卡那霉素(Kan)。
表 1. 本研究所用酿酒酵母菌株 Table 1. Strains of S. cerevisiae used in this study
Strains Characteristics Source
JWy601 GTy23 (ura3-52 prototrophy removed for use of
Cas9 system)
Keasling’s laboratory[12]
S201 PGAL1-MdOSC-TADH1 cassette
integrated into 308a site of JWy601
This study
S202 PGAL1-PbOSC-TADH1 cassette
integrated into 308a site of JWy601
This study
S203 PGAL1-RcOSC-TADH1 cassette
integrated into 308a site of JWy601
This study
S3 PGAL1-CYP716AL1-TADH1 cassette
integrated into 607b site of S201
This study
S401 PGAL1-JcCPR-TADH1 cassette
integrated into 911b site of S3
This study
S402 PGAL1-AtCPR-TADH1 cassette
integrated into 911b site of S3
This study
S403 PGAL1-LjCPR-TADH1 cassette
integrated into 911b site of S3
This study
S404 PGAL1-GuCPR-TADH1 cassette
integrated into 911b site of S3
This study
S405 PGAL1-MtCPR-TADH1 cassette
integrated into 911b site of S3
This study
S5 PGAL1-ERG20-TADH1 cassette
integrated into 1114a site of S402
This study
S6 PGAL1-ERG1-TADH1 cassette integrated
into 1622b site of S5
This study


表选项






表 2. 本研究所用质粒 Table 2. Plasmids used in this study
Plasmids Characteristics Source
pCut-308a Cas9-sgRNA plasmid for site 308a, URA3 marker, AmpR Keasling’s laboratory[13]
pCut-607b Cas9-sgRNA plasmid for site 607b, URA3 marker, AmpR Keasling’s laboratory[13]
pCut-911b Cas9-sgRNA plasmid for site 911b, URA3 marker, AmpR Keasling’s laboratory[13]
pCut-1114a Cas9-sgRNA plasmid for site 1114a, URA3 marker, AmpR Keasling’s laboratory[13]
pCut-1622b Cas9-sgRNA plasmid for site 1622b, URA3 marker, AmpR Keasling’s laboratory[13]
pET28a-MdOSC Harboring the MdOSC gene, KanR This study
pET28a-PbOSC Harboring the PbOSC gene, KanR This study
pET28a-RcOSC Harboring the RcOSC gene, KanR This study
pET28a-CYP716AL1 Harboring the CYP716AL1 gene, KanR This study
pET28a-JcCPR Harboring the JcCPR gene, KanR This study
pET28a-AtCPR Harboring the AtCPR gene, KanR This study
pET28a-LjCPR Harboring the LjCPR gene, KanR This study
pET28a-GuCPR Harboring the GuCPR gene, KanR This study
pET28a-MtCPR Harboring the MtCPR gene, KanR This study
AmpR indicates resistance to ampicillin; KanR indicates resistance to kanamycin.


表选项







1.1.2 引物: 本研究所用引物均由苏州金唯智生物科技有限公司合成,如表 3所示。
表 3. 本研究所用引物 Table 3. Primers used in this study
Primers Sequences (5′→3′)
308a-up-F1 TATTTCAGAAAAATTATTCAAAACTAAGAAGAATGAGATG
308a-up-R1 ATGGTGGTAATGCCATGTTTAGATAAAAAGAAAAAAATTCGAAGTTAATGTTGAAATTTC
607b-up-F1 GAATCTTACCTCAGAGTGCTCTTGGT
607b-up-R1 GGATATGTATATGGTGGTAATGCCATGTGTATTTTTTTTTTGGTCACTCCAGATCTAGTT
911b-up-F1 GTTGCAAAAATAGGCCTGTGCTTT
911b-up-R1 GTATATGGTGGTAATGCCATGTTTATATATACATTTATATTTATGCCCATTCAACATCCG
1114a-up-F1 GAGAAATGTTGGGATCCAGAAGAATGA
1114a-up-R1 TATATGGTGGTAATGCCATGTGATAATAGTACAAACTTACATAGCGTTGATAGTAAATAG
1622b-up-F1 AACATTTAAGTCACAAGGAGGAATATCAGTT
1622b-up-R1 TGGATATGTATATGGTGGTAATGCCATGTAACTACTTTTCTTAAACTGTCAACAGCCA
GAL1-F2 TAACTTCGAATTTTTTTCTTTTTATCTAAACATGGCATTACCACCATATACATATCCA
GAL1-R2 CATCCGCTACTTTCAATTTCCACATTATAGTTTTTTCTCCTTGACGTTAAAGTATAGAGG
MdOSC-F3 ACTTTAACGTCAAGGAGAAAAAACTATAATGTGGAAATTGAAAGTAGCGGATGGAG
MdOSC-R3 AAATCATAAATCATAAGAAATTCGCTCATGCCTTTGAGGGTAGGGGGACCCACTTACGAT
PbOSC-F3 ACTTTAACGTCAAGGAGAAAAAACTATAATGTGGAAGCTGAAGGTTGCTGATGGTG
PbOSC-R3 AAATCATAAATCATAAGAAATTCGCTCACGCTTTTGAGGGCAAAGGTACCCATTTCCTGT
RcOSC-F3 ACTTTAACGTCAAGGAGAAAAAACTATAATGTGGAAGCTAAAAGTGGCGGAAGGGG
RcOSC-R3 AAATCATAAATCATAAGAAATTCGCCTAGCTCGGTAATGGTACACGCTTACGGTATTCCG
CYP716AL1-F3 TACTTTAACGTCAAGGAGAAAAAACTATAATGGAGATCTTCTATGTCACTCTCCTTAG
CYP716AL1-R3 ATAAAAATCATAAATCATAAGAAATTCGCTTATGCATTAATGTGAGGATAAAGTCGAACA
JcCPR-F3 ACTTTAACGTCAAGGAGAAAAAACTATAATGAGTTCGGATTTGGTTAGGTATGTTG
JcCPR-R3 AAATCATAAATCATAAGAAATTCGCTCACCAGACATCTCTGAGATATCGC
AtCPR-F3 ACTTTAACGTCAAGGAGAAAAAACTATAATGACCTCGGCATTGTATGCTTCTGATT
AtCPR-R3 AAATCATAAATCATAAGAAATTCGCTTACCAAACATCTCTCAAATATCTA
LjCPR-F3 ACTTTAACGTCAAGGAGAAAAAACTATAATGGAAGAATCAAGCTCCATGAAGATTT
LjCPR-R3 AAATCATAAATCATAAGAAATTCGCTCACCATACATCACGCAAATACCTA
GuCPR-F3 ACTTTAACGTCAAGGAGAAAAAACTATAATGACTTCGAATTCCGATTTGGTTCGCA
GuCPR-R3 AAATCATAAATCATAAGAAATTCGCTCACCAGACATCCCTGAGGTAACGT
MtCPR-F3 ACTTTAACGTCAAGGAGAAAAAACTATAATGCAAGATTCAAGCTCAATGAAATTTT
MtCPR-R3 AAATCATAAATCATAAGAAATTCGCTTACCATACATCACGCAAATATCTG
ERG20-F3 TACTTTAACGTCAAGGAGAAAAAACTATAATGGCTTCAGAAAAAGAAATTAGGAGAGA
ERG20-R3 AAAAATCATAAATCATAAGAAATTCGCCTATTTGCTTCTCTTGTAAACTTTGTTCAAGA
ERG1-F3 AACGTCAAGGAGAAAAAACTATAATGTCTGCTGTTAACGTTGCACC
ERG1-R3 ATAAAAATCATAAATCATAAGAAATTCGCTTAACCAATCAACTCACCAAACAAAAATGG
ADH1-F4 AGGCATGAGCGAATTTCTTATGATTTATGATTTTTATTATTAAATAAGTTATAAAAAAAA
ADH1-R4 TAGAAGTGGTAGCAATATGTAGCAAAGAGGAGTTAGCATATCTACAATTGGGTGAA
308a-down-F5 TTCACCCAATTGTAGATATGCTAACTCCTCTTTGCTACATATTGCTACCACTTCTATTAC
308a-down-R5 TGATAGAACGAGTACAACACCCGA
607b-down-F5 CACCCAATTGTAGATATGCTAACTCCAAGAAAAGAATTTTGAGACTTACACATTATTCGG
607b-down-R5 GAGTCTAATTTGCATGATAGAATTTTACCATATCTAG
911b-down-F5 TTGTAGATATGCTAACTCCAAAAATGAAATAGCATACAAAACAGACATAAAATTTAAAAC
911b-down-R5 AATCCTATTCCAACAATATGGGTACGAGA
1114a-down-F5 TTCACCCAATTGTAGATATGCTAACTCCCATCATCTAACATCGTGAAACGAATCAG
1114a-down-R5 AGATAAGAAGTGGGAAGGTAAAATCGAATAC
1622b-down-F5 TCACCCAATTGTAGATATGCTAACTCCGTAGATACTCGTCTTACGAAATTGGATATAGTT
1622b-down-R5 ACTTTGGAAAAGAAGGTACGGACTACT


表选项







1.1.3 主要试剂: 文中所用的2×Phanta Max Master Mix和Green Taq Mix购自南京诺唯赞生物科技股份有限公司;酵母基因组DNA提取试剂盒购自天根生化科技(北京)有限公司;质粒小量制备试剂盒和琼脂糖凝胶DNA回收试剂盒购自上海捷瑞生物工程有限公司;氨苄青霉素和卡那霉素购自生工生物工程(上海)股份有限公司;酵母SC-URA培养基购自艾礼生物科技(上海)有限公司;计曼尼醇和摩尔酸标准品购自云南西力生物技术股份有限公司;聚乙二醇PEG 3350购自北京索莱宝科技有限公司;鲑鱼精DNA购自赛默飞世尔科技(中国)有限公司;醋酸锂和N, O-双(三甲基硅)三氟乙酰胺购自上海阿拉丁生化科技股份有限公司;吡啶和色谱纯乙酸乙酯购自上海麦克林生化科技有限公司;蛋白胨和酵母粉购自OXOID公司;其他试剂均为分析纯购自国药集团化学试剂有限公司。
1.2 重组菌株的构建 为构建得到酿酒酵母摩尔酸合成途径,本实验所选取的表达摩尔酸合成途径相关酶的编码基因来源情况如下:氧化鲨烯环化酶编码基因MdOSCPbOSCRcOSC分别来源于苹果(Malus domestica,Md)、白梨(Pyrus×bretschneideri,Pb)和月季花(Rosa chinensis,Rc);C-28连续三步氧化CYP450酶编码基因CYP716AL1来源于长春花(Catharanthus roseus,Cr);CPR编码基因JcCPRAtCPRLjCPRGuCPRMtCPR分别来源于麻风树(Jatropha curcas,Jc)、拟南芥(Arabidopsis thaliana,At)、百脉根(Lotus japonicus,Lj)、甘草(Glycyrrhiza uralensis,Gu)和苜蓿(Medicago truncatula,Mt)。上述基因按照酿酒酵母密码子偏好性进行优化,由苏州金唯智生物科技有限公司合成并克隆至质粒pET28a上,得到重组质粒:pET28a-MdOSC、pET28a-PbOSC、pET28a-RcOSC、pET28a-CYP716AL1、pET28a-JcCPR、pET28a- AtCPR、pET28a-LjCPR、pET28a-GuCPR和pET28a-MtCPR。在此基础上,本实验以质粒pET28a-MdOSC、pET28a-PbOSC、pET28a-RcOSC、pET28a-CYP716AL1、pET28a-JcCPR、pET28a- AtCPR、pET28a-LjCPR、pET28a-GuCPR、pET28a- MtCPR及酿酒酵母出发菌株JWy601基因组为模板,通过表 3中所示的引物,分别扩增获得MdOSCPbOSCRcOSCCYP716AL1JcCPRAtCPRLjCPRGuCPRMtCPRERG20ERG1基因片段;以酿酒酵母出发菌株JWy601基因组为模板,表 3中所示的序列为引物,分别扩增获得PGAL1TADH1和不同位点的上下游同源臂片段;同时,提取质粒pCut-308a、pCut-607b、pCut-911b、pCut-1114a和pCut-1622b,最终用于筛选获得产摩尔酸酿酒酵母重组菌株。
1.3 重组菌株的筛选 本研究采用CRISPR-Cas9基因编辑系统[13]将目的基因整合到酿酒酵母基因组上进行表达,pCut-308a、pCut-607b、pCut-911b、pCut-1114a和pCut-1622b质粒携带有表达Cas9蛋白的基因和靶向相应位点的sgRNA,用来进行基因的靶向整合。首先将MdOSCPbOSCRcOSC基因分别整合至酿酒酵母菌株JWy601的308a位点获得重组菌S201、S202和S203;进一步将CYP716AL1基因整合至S201的607b位点获得重组菌S3,分别将JcCPRAtCPRLjCPRGuCPRMtCPR基因整合至S3的911b位点获得重组菌S401、S402、S403、S404和S405;最后在S402的1114a位点整合ERG20基因获得重组菌S5,进一步整合ERG1基因至S5的1622b位点获得重组菌S6。具体筛选方法如下所述:(1) 利用醋酸锂转化法分别把1.2中得到的目的基因、PGAL1TADH1、上下游同源臂和pCut质粒共转化至酿酒酵母,利用酿酒酵母体内的同源重组能力实现PGAL1-目的基因-TADH1表达盒的组装;(2) 对转化平板(尿嘧啶营养缺陷型培养基)的转化子进行PCR验证完成初步筛选;(3) 上述转化子利用YPD培养基多次传代培养后,挑取单菌落同时在YPD和尿嘧啶营养缺陷型固体平板上划线,获得质粒消除成功的单菌落;(4) 将上述质粒消除成功的单菌落再次进行PCR验证并测序,最终获得产摩尔酸酿酒酵母重组菌株。
1.4 重组菌株发酵实验 将平板活化得到的单克隆重组菌株接种于10 mL YPD培养基中,30 ℃、200 r/min振荡培养24 h,以初始菌体浓度OD600=0.2转接至50 mL YPD培养基中,30 ℃、200 r/min振荡培养24 h后,离心收集菌体更换50 mL YPG培养基诱导表达,每隔24 h取1次样,诱导120 h发酵结束,测定重组菌株生长趋势、计曼尼醇和摩尔酸产量。
1.5 重组菌株产物的提取 由于计曼尼醇和摩尔酸存在于酿酒酵母胞内,因此提取时,需要对酿酒酵母细胞进行破碎处理。具体方法如下所述:(1) 取1 mL发酵液,离心收集菌体,加入等体积20%氢氧化钾溶液(用50%乙醇配制),重悬后置于沸水中10 min裂解细胞;(2) 用等体积乙酸乙酯萃取3次,离心取上清,并加入无水硫酸钠除水;(3) 氮吹浓缩后加入200 μL乙酸乙酯、200 μL N, O-双(三甲基硅)三氟乙酰胺和200 μL吡啶,于55 ℃条件下衍生化反应1 h;(4) 反应液用氮气吹干后加入1 mL乙酸乙酯复溶,转移至气相小瓶中利用气相色谱-质谱联用仪对提取的发酵产物进行分析。
1.6 产物的含量测定 气相色谱-质谱联用仪(GC-MS)测定:色谱柱DB-5MS;分流比10︰1,进样量1 μL,载气氦气的流速为1.0 mL/min;升温程序:180 ℃保持1 min,以20 ℃/min升至300 ℃,保持14 min;质谱扫描范围为50–700 m/z。计曼尼醇和摩尔酸标准品用于定性和定量分析。
2 结果和分析 2.1 计曼尼醇细胞工厂构建及产物分析 鲨烯可在酵母内源的鲨烯环氧酶催化下形成2, 3-氧化鲨烯,在酿酒酵母中引入植物来源的氧化鲨烯环化酶可催化2, 3-氧化鲨烯环化形成计曼尼醇(图 1)。本实验通过检索NCBI数据库,以来源于苹果的氧化鲨烯环化酶MdOSC[1] (GenBank ID:NM_001328982.1)作为参比序列,进行氨基酸序列同源性分析。最终,本实验选取来源于白梨的氧化鲨烯环化酶PbOSC (GenBank ID:XM_018650195.1,同源性98%)和来源于月季花的氧化鲨烯环化酶RcOSC (GenBank ID:XM_024327323.1,同源性88%)用于构建计曼尼醇细胞工厂,构建计曼尼醇合成途径表达盒如图 2所示。在酿酒酵母JWy601中,分别整合MdOSCPbOSCRcOSC基因,PCR验证结果如图 3所示,所得DNA片段大小均与表达盒大小理论值一致(3136 bp)。测序结果表明,本实验成功构建得到分别整合有氧化鲨烯环化酶MdOSC、PbOSC和RcOSC的酿酒酵母重组菌株S201、S202和S203,可被用于酿酒酵母发酵产计曼尼醇。
图 2 计曼尼醇合成途径表达盒 Figure 2 Germanicol synthesis pathway expression cassette. up308a: upstream homology arm of 308a site; arrow: promoter; circle connected by dashed line: RNA stability element; half-circle: ribosome binding site; MdOSC: oxidosqualene cyclase from M. domestica; PbOSC: oxidosqualene cyclase from P. bretschneideri; RcOSC: oxidosqualene cyclase from R. chinensis; T: terminator; dn308a: downstream homology arm of 308a site.
图选项





图 3 整合氧化鲨烯环化酶PCR验证 Figure 3 PCR verification of integrating oxidosqualene cyclases. M: DL5000 marker; lane 1: result of engineered strain S201; lane 2: result of engineered strain S202; lane 3: result of engineered strain S203.
图选项





重组菌株在YPG培养基中发酵48 h后,利用GC-MS对发酵产物进行定性和定量分析。结果如图 4所示,重组菌株S201在14.35 min时出现与计曼尼醇标准品保留时间一致的峰(图 4-A),根据质谱图(图 4-B)进一步确定为计曼尼醇,其产量达到68.3 mg/L。出发菌株JWy601发酵产物未检测到计曼尼醇,重组菌株S202和S203发酵产物中计曼尼醇产量分别为45.5 mg/L和20.1 mg/L。结果表明,重组菌株S201中的计曼尼醇产量较高,将用于后续研究。
图 4 GC-MS方法对重组菌株S201发酵产物进行鉴定 Figure 4 Identification of engineered strain S201 fermentation products by GC-MS method. A: total ion chromatogram detected by GC-MS; B: mass spectrum of standard and intracellular extract from engineered strain S201 of germanicol.
图选项





2.2 摩尔酸细胞工厂构建及产物分析 催化计曼尼醇生物合成摩尔酸的过程本质是计曼尼醇C-28位的甲基通过三步连续氧化生成羧基的过程,需要CYP450氧化酶和CPR的参与(图 1)。本研究进一步以产计曼尼醇酿酒酵母重组菌株为底盘细胞,选取研究室前期筛选得到活性最高的长春花来源的C-28连续三步氧化CYP450酶CYP716AL1 (GenBank ID:JN565975.1)和麻风树来源的JcCPR (GenBank ID:XM_012212633.2)用于构建摩尔酸细胞工厂,构建摩尔酸合成途径表达盒如图 5所示。本研究在菌株S201中整合CYP716AL1基因,PCR验证结果如图 6-A所示,所得DNA片段大小与表达盒大小理论值相符(2293 bp),获得重组菌株S3;在菌株S3中整合JcCPR基因,PCR验证结果如图 6-B所示,所得DNA片段大小与表达盒大小理论值一致(2920 bp)。测序结果表明,本研究成功构建得到整合有CYP716AL1和JcCPR的酿酒酵母重组菌株S401,可被用于酿酒酵母发酵产摩尔酸。
图 5 摩尔酸合成途径表达盒 Figure 5 Morolic acid synthesis pathway expression cassette. up607b: upstream homology arm of 607b site; up911b: upstream homology arm of 911b site; arrow: promoter; circle connected by dashed line: RNA stability element; half-circle: ribosome binding site; CYP716AL1: cytochrome P450 oxidase from C. roseus; JcCPR: cytochrome P450 reductase from J. curcas; T: terminator; dn607b: downstream homology arm of 607b site; dn911b: downstream homology arm of 911b site.
图选项





图 6 整合CYP716AL1 (A)和JcCPR (B) PCR验证 Figure 6 PCR verification of integrating CYP716AL1 (A) and JcCPR (B). A: M: DL10000 marker; lane 1–4: results of engineered strain S3. B: M: DL10000 marker; lane 1–4: results of engineered strain S401.
图选项





重组菌株S401在诱导培养基中发酵48 h,样品萃取衍生化后用GC-MS检测,结果如图 7所示,在16.57 min时出现与摩尔酸标准品保留时间一致的峰(图 7-A),根据质谱图(图 7-B)进一步确定为摩尔酸,其产量为15.0 mg/L。该结果表明,本研究成功构建得到摩尔酸细胞工厂。
图 7 GC-MS方法对重组菌株S401发酵产物进行鉴定 Figure 7 Identification of engineered strain S401 fermentation products by GC-MS method. A: total ion chromatogram detected by GC-MS; B: mass spectrum of standard and intracellular extract from engineered strain S401 of morolic acid.
图选项





2.3 CYP450氧化酶和CPR适配研究 在酿酒酵母体内,CYP450氧化酶催化的反应中必须有CPR的参与(图 1)。CPR是一种膜锚定蛋白,主要定位于内质网,它拥有FMN、FAD和NADPH 3个辅因子结合域,CPR的主要功能是将NADPH传递来的电子传递到CYP450氧化酶的血红素上[14-15]。植物来源的CYP450氧化酶不能有效利用酵母内源的CPR,造成电子传递的不匹配,影响了CYP450氧化酶的表达。已有文献表明,在酿酒酵母中共表达植物来源CPR可以显著提高植物P450酶活力[16-17],植物来源CPR的表达是酵母体内CYP450氧化酶高效表达的关键。
为了提高CYP716AL1的催化能力,以进一步提高酿酒酵母重组菌株产摩尔酸能力,本研究另外选取了拟南芥、百脉根、甘草和苜蓿来源的CPR (AtCPR、LjCPR、GuCPR和MtCPR),以期优化电子传递链。即在菌株S3中分别整合AtCPRLjCPRGuCPRMtCPR基因,成功构建重组菌株S402、S403、S404和S405。诱导发酵48 h结果如图 8-A所示,菌株S402中摩尔酸的产量最高,达24.3 mg/L,是对照菌株S401摩尔酸产量的1.62倍;菌株S403和S404中摩尔酸产量分别是22.4 mg/L和16.7 mg/L,是对照菌株S401摩尔酸产量的1.49倍和1.11倍;菌株S405中摩尔酸产量仅为9.5 mg/L。重组菌株S402菌体生长曲线和产物产量变化曲线如图 8-B所示,诱导发酵48 h摩尔酸产量最高。实验结果表明不同来源的CPR会影响摩尔酸的产量,拟南芥来源的AtCPR具有更高的电子传递效率。因此,选择菌株S402进行后续实验优化。
图 8 不同CPR提高摩尔酸的产量 Figure 8 Enhanced the production of morolic acid by using different CPR. A: triterpenoids production in engineered yeast strains; B: growth curve and product yield curve of engineered strain S402. The standard deviations of the data points were obtained from triplicate measurements and denoted by error bars.
图选项





2.4 MVA途径的优化对酿酒酵母萜类产量的影响 MVA途径作为细胞中乙酰辅酶A转化为萜类化合物的第1个关键模块(图 1),其活性会直接影响到细胞中萜类产量,其中,ERG20、ERG9 (出发菌株JWy601已对其进行了过表达)和ERG1是酿酒酵母MVA代谢途径中的关键酶。ERG20基因编码法尼基焦磷酸合酶,其作用是把IPP和DMAPP催化生成FPP;ERG9基因编码鲨烯合酶催化FPP生成鲨烯,是三萜类化合物转化的第一个酶促反应[18]ERG1基因编码鲨烯环氧酶,其作用是把鲨烯氧化生成2, 3-氧化鲨烯。张学礼等[19]用同源重组的方法提高菌株中ERG20ERG9ERG1基因的表达量,提高了酿酒酵母重组菌株中达玛烯二醇和原人参二醇的产量。
因此,为进一步提高本研究构建得到的酿酒酵母重组菌株S402产摩尔酸能力,本研究在先前工作的基础上,通过代谢工程的策略对菌株S402进行了改造。即在菌株S402中过表达ERG20基因,得到重组菌株S5;在菌株S5中过表达ERG1基因,成功构建重组菌株S6。YPG培养基发酵48 h结果如图 9-A所示,菌株S5中摩尔酸的产量是24.0 mg/L,与对照菌株S402相比没有明显变化;菌株S6中摩尔酸的产量达到34.1 mg/L,是对照菌株S402摩尔酸产量的1.40倍,重组菌株S6菌体生长曲线和产物产量变化曲线如图 9-B所示,摩尔酸产量在YPG培养基发酵48 h达到最高。实验结果表明增加前体物质的供应可显著增强重组菌株三萜类化合物的生产能力。本研究为构建高产齐墩果烷型三萜酿酒酵母细胞工厂提供了理论和技术依据。
图 9 过表达ERG20和ERG1提高摩尔酸的产量 Figure 9 Enhanced the production of morolic acid by overexpressing ERG20 and ERG1. A: triterpenoids production in engineered yeast strains; B: growth curve and product yield curve of engineered strain S6. The standard deviations of the data points were obtained from triplicate measurements and denoted by error bars.
图选项





3 讨论 本研究通过氨基酸序列同源性分析及筛选,确定了来源于苹果的氧化鲨烯环化酶MdOSC,将其整合至酿酒酵母基因组上,实现了计曼尼醇的高效合成;进一步将长春花来源的CYP450氧化酶CYP716AL1和CPR整合至产计曼尼醇酿酒酵母底盘细胞中,通过CYP450氧化酶和CPR适配以及MVA途径的优化,最终摩尔酸的产量达到了34.1 mg/L,是目前报道的最高产量,后续会开展发酵罐优化工作提高其产量;同时,本研究整合表达异源基因的重组菌株更稳定,没有抗性筛选标记,更适合未来工业化生产应用。
目前,具有单一催化功能的氧化鲨烯环化酶很少,需要进一步发现和挖掘特异性和活性更优的氧化鲨烯环化酶。P450单加氧酶是天然产物合成中重要的修饰酶,但是,异源表达的植物P450在微生物中显示出较差的化学和区域选择性,从而限制了摩尔酸的高效生物合成。李春课题组[20]利用甘草次酸合成相关的植物P450单加氧酶CYP72A63,基于同源建模与分子对接等技术设计将特定C-H键分别氧化为羟基、醛和羧酸的酶,实现了4种稀有甘草三萜化合物的特异性合成,本研究下一步工作将主要围绕CYP450氧化酶的改造进行。此外,大多数萜类化合物会对微生物宿主表现出或多或少的毒性,这可能影响细胞生长,降低产量,通过膜转运工程[21]和添加β-环糊精类物质[22]等策略降低产物的细胞毒性也可以提高微生物合成植物三萜化合物。综上所述,本研究实现了摩尔酸的高效生物合成,为构建高产齐墩果烷型三萜酿酒酵母细胞工厂提供了理论和技术依据。

References
[1] Andre CM, Legay S, Deleruelle A, Nieuwenhuizen N, Punter M, Brendolise C, Cooney JM, Lateur M, Hausman JF, Larondelle Y, Laing WA. Multifunctional oxidosqualene cyclases and cytochrome P450 involved in the biosynthesis of apple fruit triterpenic acids. New Phytologist, 2016, 211(4): 1279-1294. DOI:10.1111/nph.13996
[2] Huang LL, Li J, Ye HC, Li CF, Wang H, Liu BY, Zhang YS. Molecular characterization of the pentacyclic triterpenoid biosynthetic pathway in Catharanthus roseus. Planta, 2012, 236(5): 1571-1581. DOI:10.1007/s00425-012-1712-0
[3] Dorr CR, Yemets S, Kolomitsyna O, Krasutsky P, Mansky LM. Triterpene derivatives that inhibit human immunodeficiency virus type 1 replication. Bioorganic & Medicinal Chemistry Letters, 2011, 21(1): 542-545.
[4] Ramírez-Espinosa JJ, García-Jiménez S, Rios MY, Medina-Franco JL, López-Vallejo F, Webster SP, Binnie M, Ibarra-Barajas M, Ortiz-Andrade R, Estrada-Soto S. Antihyperglycemic and sub-chronic antidiabetic actions of morolic and moronic acids, in vitro and in silico inhibition of 11β-HSD 1. Phytomedicine, 2013, 20(7): 571-576. DOI:10.1016/j.phymed.2013.01.013
[5] Hu ZH, Chen BX, Yu AQ, Xiao DG. Strategies of metabolic engineering Saccharomyces cerevisiae to produce plant-derived D-limonene. Acta Microbiologica Sinica, 2018, 58(9): 1542-1550. (in Chinese)
胡智慧, 谌柄旭, 于爱群, 肖冬光. 代谢工程改造酿酒酵母合成植物萜类D-柠檬烯的策略. 微生物学报, 2018, 58(9): 1542-1550.
[6] Sun L, Wang JH, Jiang W, Li YR, Zhang L, Ding ZY, Gu ZH, Shi GY, Xu S. Construction of a highly efficient synthetic lycopene engineered Saccharomyces cerevisiae. Chinese Journal of Biotechnology, 2020, 36(7): 1334-1345. (in Chinese)
孙玲, 王均华, 蒋玮, 李由然, 张梁, 丁重阳, 顾正华, 石贵阳, 徐沙. 高效合成番茄红素酿酒酵母菌株的构建. 生物工程学报, 2020, 36(7): 1334-1345.
[7] Wang BB, Shi MY, Wang D, Xu JY, Liu Y, Yang HJ, Dai ZB, Zhang XL. Production of β-carotene by metabolically engineered Saccharomyces cerevisiae. Chinese Journal of Biotechnology, 2014, 30(8): 1204-1216. (in Chinese)
王贝贝, 施明雨, 王冬, 许骄阳, 刘怡, 杨洪江, 戴住波, 张学礼. 代谢工程改造酿酒酵母生产β-胡萝卜素. 生物工程学报, 2014, 30(8): 1204-1216.
[8] Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, McPhee D, Leavell MD, Tai A, Main A, Eng D, Polichuk DR, Teoh KH, Reed DW, Treynor T, Lenihan J, Jiang H, Fleck M, Bajad S, Dang G, Dengrove D, Diola D, Dorin G, Ellens KW, Fickes S, Galazzo J, Gaucher SP, Geistlinger T, Henry R, Hepp M, Horning T, Iqbal T, Kizer L, Lieu B, Melis D, Moss N, Regentin R, Secrest S, Tsuruta H, Vazquez R, Westblade LF, Xu L, Yu M, Zhang Y, Zhao L, Lievense J, Covello PS, Keasling JD, Reiling KK, Renninger NS, Newman JD. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature, 2013, 496(7446): 528-532. DOI:10.1038/nature12051
[9] Yu Y, Rasool A, Liu HR, Lv B, Chang PC, Song H, Wang Y, Li C. Engineering Saccharomyces cerevisiae for high yield production of α-amyrin via synergistic remodeling of α-amyrin synthase and expanding the storage pool. Metabolic Engineering, 2020, 62: 72-83. DOI:10.1016/j.ymben.2020.08.010
[10] Zhu M, Wang CX, Sun WT, Zhou AQ, Wang Y, Zhang GL, Zhou XH, Huo YX, Li C. Boosting 11-oxo-β-amyrin and glycyrrhetinic acid synthesis in Saccharomyces cerevisiae via pairing novel oxidation and reduction system from legume plants. Metabolic Engineering, 2018, 45: 43-50. DOI:10.1016/j.ymben.2017.11.009
[11] Srisawat P, Yasumoto S, Fukushima EO, Robertlee J, Seki H, Muranaka T. Production of the bioactive plant-derived triterpenoid morolic acid in engineered Saccharomyces cerevisiae. Biotechnology and Bioengineering, 2020, 117(7): 2198-2208. DOI:10.1002/bit.27357
[12] Wong J, D'Espaux L, Dev I, van der Horst C, Keasling JD. De novo synthesis of the sedative valerenic acid in Saccharomyces cerevisiae. Metabolic Engineering, 2018, 47: 94-101. DOI:10.1016/j.ymben.2018.03.005
[13] Reider Apel A, d'Espaux L, Wehrs M, Sachs D, Li RA, Tong GJ, Garber M, Nnadi O, Zhuang W, Hillson NJ, Keasling JD, Mukhopadhyay A. A Cas9-based toolkit to program gene expression in Saccharomyces cerevisiae. Nucleic Acids Research, 2017, 45(1): 496-508. DOI:10.1093/nar/gkw1023
[14] Renault H, Bassard JE, Hamberger B, Werck-Reichhart D. Cytochrome P450-mediated metabolic engineering: current progress and future challenges. Current Opinion in Plant Biology, 2014, 19: 27-34. DOI:10.1016/j.pbi.2014.03.004
[15] Jensen K, M?ller BL. Plant NADPH-cytochrome P450 oxidoreductases. Phytochemistry, 2010, 71(2/3): 132-141.
[16] Urban P, Mignotte C, Kazmaier M, Delorme F, Pompon D. Cloning, yeast expression, and characterization of the coupling of two distantly related Arabidopsis thaliana NADPH-cytochrome P450 reductases with P450 CYP73A5. Journal of Biological Chemistry, 1997, 272(31): 19176-19186. DOI:10.1074/jbc.272.31.19176
[17] Eberle D, Ullmann P, Werck-Reichhart D, Petersen M. cDNA cloning and functional characterisation of CYP98A14 and NADPH: cytochrome P450 reductase from Coleus blumei involved in rosmarinic acid biosynthesis. Plant Molecular Biology, 2009, 69(3): 239-253. DOI:10.1007/s11103-008-9420-7
[18] Kennedy MA, Barbuch R, Bard M. Transcriptional regulation of the squalene synthase gene (ERG9) in the yeast Saccharomyces cerevisiae. Biochimica et Biophysica Acta: BBA-Gene Structure and Expression, 1999, 1445(1): 110-122. DOI:10.1016/S0167-4781(99)00035-4
[19] 张学礼, 黄璐琦, 戴住波, 刘怡, 张夏楠, 施明雨, 马延和. 生产达玛二烯和原人参二醇的重组微生物及其构建方法. 中国: 102925376A. 2013-02-13.
[20] Sun WT, Xue HJ, Liu H, Lv B, Yu Y, Wang Y, Huang ML, Li C. Controlling chemo- and regioselectivity of a plant P450 in yeast cell toward rare licorice triterpenoid biosynthesis. ACS Catalysis, 2020, 10(7): 4253-4260. DOI:10.1021/acscatal.0c00128
[21] Farhi M, Marhevka E, Masci T, Marcos E, Eyal Y, Ovadis M, Abeliovich H, Vainstein A. Harnessing yeast subcellular compartments for the production of plant terpenoids. Metabolic Engineering, 2011, 13(5): 474-481. DOI:10.1016/j.ymben.2011.05.001
[22] Moses T, Pollier J, Almagro L, Buyst D, van Montagu M, Pedre?o MA, Martins JC, Thevelein JM, Goossens A. Combinatorial biosynthesis of sapogenins and saponins in Saccharomyces cerevisiae using a C-16α hydroxylase from Bupleurum falcatum. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(4): 1634-1639. DOI:10.1073/pnas.1323369111

相关话题/基因 细胞 工厂 植物 生物