刘萍, 赵金标, 耿正颖, 王军军, 刘岭, 王春林, 郭娉婷, 吴怡, 张刚, 黄冰冰
中国农业大学动物科技学院, 动物营养学国家重点实验室, 北京 100193
收稿日期:2018-06-12;修回日期:2018-09-12;网络出版日期:2018-10-15
基金项目:中国博士后科学基金(2017M610132);北京市自然科学基金(S170001);国家自然科学基金(31630074)
*通信作者:刘萍。Tel:+86-10-62731000, E-mail:pingliu2010@gmail.com.
摘要:[目的] 本试验旨在研究日粮添加海带提取物褐藻糖胶对断奶仔猪生长性能、营养物质消化率、机体免疫力和肠道微生物多样性的影响。[方法] 试验选用36头初始体重为(7.43±0.12)kg的健康仔猪,按照随机区组设计分为3组,每组12头。日粮处理组分别为不含抗生素的基础日粮组、抗生素组和褐藻糖胶组;试验期为28 d。评价褐藻糖胶对仔猪生长性能和营养物质消化率的影响;通过比色法和酶联免疫吸附法检测血清中与免疫相关的指标;通过16S rRNA扩增子高通量测序检测试验第0、14和28天肠道微生物多样性。[结果] 日粮添加褐藻糖胶可降低试验0-14 d仔猪耗料增重比(P < 0.05),但对试验全期仔猪平均日增重和平均日采量无显著影响(P>0.05)。与对照组相比,饲喂褐藻糖胶日粮后,仔猪的中性洗涤纤维和酸性洗涤纤维表观消化率显著提高(P < 0.05);仔猪饲喂抗生素和褐藻糖胶日粮后,血清IL-22含量显著降低。试验第14天,抗生素组和褐藻糖胶处理组中Bacteroidetes数量呈上升趋势(P=0.07);试验第28天,抗生素组和褐藻糖胶处理组Actinobacteria丰度显著高于对照组(P < 0.05),且褐藻糖胶处理组Bacteroides属的菌群丰度显著高于对照组和抗生素组。[结论] 日粮添加褐藻糖胶提高了断奶仔猪纤维养分消化率和拟杆菌属的丰富度和多样性,并且降低了促炎性细胞因子IL-22含量,这有助于缓解仔猪的断奶应激反应,建立稳定健康肠道菌群。
关键词:褐藻糖胶抗炎肠道菌群拟杆菌属断奶仔猪
Influence of dietary fucoidan on inflammatory response and intestinal microbial diversity in weaned pigs
Ping Liu, Jinbiao Zhao, Zhengying Geng, Junjun Wang, Ling Liu, Chunlin Wang, Pingting Guo, Yi Wu, Gang Zhang, Bingbing Huang
State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
*Corresponding author: Liu Ping.Tel: +86-10-62731000; E-mail: pingliu2010@gmail.com.
Foundation item: Supported by the China Postdoctoral Science Foundation (2017M610132), by the Beijing Municipal Natural Science Foundation (S170001) and by the National Natural Science Foundation of China (31630074)
Abstract: [Objective] We studied the effects of dietary fucoidan on growth performance, nutrient digestibility, immune index in serum, and gut microbiota composition in weaned pigs. [Methods] A total of 36 weaned pigs (body weight 7.43±0.12 kg) were allocated to 3 dietary treatments, and piglets in each group received control diet, control diet containing antibiotic, control diet containing fucoidan for 28 days. Growth performance and nutrient digestibility were evaluated in piglets. Serum indices related to immunity were measured by spectrophotometric and ELISA assays. Gut microbiota composition was determined using 16S rRNA amplicon sequencing. [Results] A reduction in feed conversion ratio in piglets fed fucoidan supplementation on 0-14 days (P < 0.05). The digestibility of neutral detergent fiber and acid detergent fiber were increased in fucoidan dietary treatment (P < 0.05). Compared with the control group, the production of interleukin 22 decreased in piglets treated with antibiotic and fucoidan intervention (P < 0.05). Piglets provided with antibiotic and fucoidan treatments showed an increased tendency (P=0.07) in the population of Bacteroidetes members on day 14, whereas the abundance of Actinobacteria increased (P < 0.05) on day 28. Specifically, there was an increase in the Bacteroides genus in diet containing fucoidan when compared to those in control and antibiotic groups. [Conclusion] Dietary fucoidan improved the fiber digestibility and the richness and diversity of Bacteroides genus, and decreased inflammatory cytokines of IL-22 production in weaned pigs. These changes should alleviate the post-weaning stress and contribute to the establishment of healthy and stable digestive system in weaned pigs.
Keywords: fucoidananti-inflammationgut microbiotaBacteroidesweaned pigs
断奶仔猪肠道菌群和免疫系统尚未发育完全,受到与母猪分离、转圈、新生长环境和日粮等应激的影响,导致仔猪采食量减少和肠道微生态环境紊乱,容易引发肠道炎症和腹泻[1]。日粮添加抗生素可以有效预防断奶仔猪的腹泻,对生长还有促进作用。然而,动物长期饲用抗生素造成大量耐药菌形成、肠道菌群失调、免疫力下降和畜产品药物残留等负面影响,耐药菌通过畜产品传播给人类,威胁着人类的健康[2]。因此,如何减少仔猪疾病发生和养殖业中抗生素使用量,是当前畜禽养殖业亟待解决的问题,具有重要的研究意义。
近些年,海藻及其提取物研究备受关注。医学界认为,它们具有潜在的抗病毒、抗菌、抗氧化和增强免疫机能等功能[3];在畜牧生产中,海藻及其提取物可改善动物的生长性能、免疫力和肠道健康[4-5]。海藻富含多糖成分,它们可以抵抗胃肠道消化酶水解作用,被大肠微生物发酵利用生成短链脂肪酸,进而发挥重要的生理功能[6]。海带是最常见的褐藻,主要成分包含甘露醇、褐藻酸钠、海带淀粉和褐藻糖胶。褐藻糖胶是所有褐藻固有的、存在于细胞基质中的细胞间产物,其主要成分是L-岩藻糖-4-硫酸酯,还含有少量的半乳糖、甘露糖、木糖、葡萄糖、阿拉伯糖和糖醛酸[7]。试验表明,褐藻糖胶能够阻止病原菌在猪胃肠道黏膜上的定殖,具有抗炎特性[8]。目前,我国对海藻提取物改善猪肠道健康的机理研究尚处于探索阶段。因此,本文研究低纤维日粮中添加褐藻糖胶对断奶仔猪生长性能、营养物质消化率、机体免疫力和肠道菌群多样性的影响,为海洋生物饲料和添加剂的开发和利用提供依据。
1 材料和方法 1.1 试验材料 褐藻糖胶购于青岛明月集团有限公司,样品纯度为90%。
1.2 试验动物与饲养管理 试验选用36头初始体重为(7.43±0.12 kg)的健康三元杂交(杜×长×大)断奶仔猪,根据体重和性别进行完全随机区组设计,分为3个试验组,每组3圈,每圈4头仔猪。试验期为28 d。试验日粮包括:对照组,即为基础日粮;抗生素组,基础日粮中添加75 mg/kg金霉素;褐藻糖胶组,基础日粮中添加500 mg/kg褐藻糖胶。海藻糖胶的添加剂量参考文献报道[9]。试验日粮的CP、DE和Ca、P水平保持一致,日粮营养成分和氨基酸水平满足NRC标准(2012)。基础日粮中不含有抗生素,日粮组成及营养水平见表 1。
表 1. 试验日粮组成和营养成分(饲喂基础) Table 1. The composition of experimental diet and nutrient levels (as-fed basis)
Ingredients | Basal diet |
Corn starch | 59.72% |
Soybean isolated protein | 12.80% |
Fish meal1 | 10.00% |
Whey power2 | 8.00% |
Soybean oil | 0.45% |
Sucrose | 2.00% |
Dextrose | 4.00% |
Flavor powder | 0.05% |
Sweetener | 0.03% |
Dicalcium phosphate | 1.40% |
Limestone | 0.20% |
Sodium chloride | 0.15% |
Lysine | 0.35% |
Methionine | 0.10% |
Threonine | 0.20% |
Tryptophan | 0.05% |
Vitamin-mineral premix3 | 0.50% |
Total | 100% |
Nutritional level4 | |
Digestive energy | 3543 kcal/kg |
Crude protein | 18.41% |
Calcium | 0.84% |
Total phosphorous | 0.65% |
Lysine | 1.39% |
Methionine | 0.40% |
Threonine | 0.81% |
Tryptophan | 0.25% |
1Concentration of crude protein in fish meal was 64.6%. 2Concentration of crude protein in whey power was 3.8%. 3Vitamin and mineral premix provide the following per kilogram of diet: 15000 IU vitamin A; 8000 IU vitamin D3; 30 IU vitamin E; 2.5 mg vitamin K3; 2.5 mg vitamin B1; 4.0 mg vitamin B2; 3.0 mg vitamin B6; 20μg vitamin B12; 40 mg nicotinic acid; 12.5 mg pantothenic acid; 0.7 mg folic acid; 20 μg biotin; 400 mg Fe as ferrous sulfate; 150 mg Cu as basic cupric chloride; 150 mg Zn as zinc sulfate; 80 mg Mn as manganese sulfate; 0.4 mg I as ethylenediamine dihydroiodide; 0.3 mg Se as sodium selenite. 4Nutritional levels were calculated values. |
表选项
试验在国家饲料工程技术研究中心/农业部饲料工业中心动物试验基地(河北丰宁)进行。试验前清洗料槽和水槽,对猪舍进行彻底消毒,对试验猪进行常规免疫与驱虫。猪舍温度控制在25℃左右。试验仔猪分栏饲养,饲养于1.5 m×1.5 m的圈内,漏缝喷塑地板,不锈钢可调式料槽,乳头式饮水器。粉料饲喂,试验猪自由采食和饮水。消毒工作按常规程序进行。严格遵循猪场饲养和管理制度,每日观察猪采食、粪便和精神状况。
1.3 生长性能 试验第0、14和28天清晨对每头仔猪进行逐一称重,计算平均日增重(Average daily gain,ADG);以重复(圈)为单位记录耗料量,试验第14和28天结料称重,计算平均日采食量(Average daily feed intake,ADFI);以重复(圈)为单位,计算耗料增重比(Feed conversion ratio,FCR)。
1.4 营养物质表观消化率 试验第24–26天,连续收集各圈仔猪的新鲜粪样,并混合均匀。将试验日粮和粪样65℃烘干72 h,后置于室温下回潮24 h,粉碎过40目筛,回潮,用于营养物质消化率分析。采用酸不溶灰分(AIA)指示剂法,测定干物质(DM)、总能(GE)、粗蛋白(CP)、脂肪酸(EE)、中性洗涤纤维(NDF)和酸性洗涤纤维(ADF)等营养物质表观消化率。全自动能量测定仪(Parr,6400,USA)测定试验饲料和粪样中总能(GE)含量,自动凯氏定氮仪(FOSS,Kjeltec TM2100,Denmark)分析样品粗蛋白(CP)含量;脂肪仪(ANKOM,XT15I,USA)测定脂肪(EE)含量;纤维分析仪(ANKOM,Fiber Analyzer 2000,USA)测定中性洗涤纤维(NDF)和酸性洗涤纤维(ADF)的含量,各营养物质表观消化率按公式(1)计算。
公式(1) |
1.5 血清免疫指标 试验第28天早晨从每圈中选取2头体重接近平均水平的仔猪进行前腔静脉采血5 mL,室温静置2 h后,于4℃下3000 r/min离心15 min,取上清液分装于1.5 mL离心管,置于–20℃保存。通过比色法和酶联免疫吸附法检测血清中免疫球蛋白A(IgA)、免疫球蛋白G(IgG)、免疫球蛋白M(IgM)、肿瘤坏死因子-α(TNF-α)、白介素-1β (IL-1β)、白介素-6(IL-6)、白介素-10(IL-10)和白介素-22(IL-22)的含量。
1.6 肠道微生物DNA提取、测序和数据分析 试验第0、14和28天,采集每圈中1头仔猪直肠处新鲜粪样(n=3/处理组),装入无菌Eppendorf管中,迅速转移至液氮中,保存于–80℃用于样品检测。使用E.Z.N.A.? soil试剂盒(Omega Bio-tek, Norcross, GA, USA)提取粪样中细菌的总DNA,利用NanoDrop2000检测DNA浓度和纯度。根据细菌通用引物338F (5?-ACTCCTACGGGAGGCAGC AG-3?)和806R (5?-GGACTACHVGGGTWTCTAA T-3?)对细菌V3–V4可变区的16S rRNA基因进行PCR扩增。扩增程序为:95℃ 3 min,27个循环:95℃ 30 s,55℃ 30 s,72℃ 30 s,72℃ 10 min。扩增体系为20 μL,5×FastPfu缓冲液4μL,2.5 mmol/L dNTPs 2 μL,上下游引物(5 μmol/L)各0.8μL,FastPfu聚合酶0.4μL,10 ng DNA模板。
利用Axyprep DNA Gel Extraction Kit (Axygen Biosciences, Union City, CA, USA)对PCR扩增产物进行回收纯化,Tris-HCl洗脱,2%琼脂糖凝胶电泳检测DNA片段。将纯化后的扩增片段构建文库,利用Illumina公司的Miseq PE300平台进行测序。原始测序序列使用Trimmomatic (version 3.29)软件质控,使用FLASH软件进行拼接,之后使用UPARSE软件(version 7.1),根据97%的相似度对序列进行操作分类单位(Operational taxonomic unit,OTU)聚类;使用UCHIME软件剔除嵌合体。利用RDP classifier对每条序列进行物种分类注释,比对Silva数据库(SSU123),设置比对阈值为80%。测序原始数据上传公开至NCBI的Sequence Read Archive数据库,序列号No. SRP149889。
1.7 数据分析 动物生长性能、营养物质表观消化率和血清中免疫指标数据均使用SPSS 23.0统计软件(Chicago,IL,USA)进行One-way ANOVA方差分析;组间采用Turkey氏法进行多重比较显著性检验,试验数据以平均值表示。微生物分类注释的OTU数据使用R统计软件(version 3.2.2)进行Kruskal-wallis方差分析,组间采用Fdr进行多重比较显著性检验,试验数据以平均值表示。统计结果P < 0.05为差异显著。
2 结果 2.1 褐藻糖胶对断奶仔猪生长性能的影响 如表 2所示,在试验0–14 d、15–28 d和整个试验期,各试验组断奶仔猪ADG和ADFI差异不显著(P > 0.05)。试验0–14 d,日粮添加褐藻糖胶的FCR显著低于基础日粮组(P < 0.05),而15–28 d和整个试验期各试验组FCR差异不显著(P > 0.05)。
表 2. 日粮添加褐藻糖胶对断奶仔猪生长性能的影响 Table 2. Effects of dietary fucoidan on growth performance of weaned pigs
Items | day 0–14 | day 15–28 | day 0–28 | ||||||||
ADG/g | ADFI/g | FCR | ADG/g | ADFI/g | FCR | ADG/g | ADFI/g | FCR | |||
Basal diet | 293.1±11.9 | 549.3±10.4 | 1.84±0.03a | 439.8±26.2 | 858.0±35.6 | 1.91±0.07 | 363.6±15.4 | 697.3±24.2 | 1.89±0.02 | ||
Antibiotic group | 286.1±19.8 | 518.3±21.0 | 1.82±0.06ab | 428.7±27.4 | 831.3±47.3 | 1.92±0.03 | 354.8±21.4 | 670.3±32.0 | 1.87±0.04 | ||
Fucoidan group | 316.0±16.3 | 519.7±23.1 | 1.65±0.01b | 442.9±20.8 | 843.0±48.0 | 1.86±0.05 | 377.1±14.9 | 668.3±31.8 | 1.76±0.02 | ||
Values in the same row with different letter superscripts mean significant difference (P < 0.05). The same is as below. |
表选项
2.2 褐藻糖胶对断奶仔猪营养消化率的影响 如表 3所示,与抗生素组相比,日粮添加褐藻糖胶显著提高了仔猪NDF消化率(P < 0.05);与对照组相比,日粮添加褐藻糖胶显著提高了ADF消化率(P < 0.05)。日粮添加褐藻糖胶对DM、GE、CP和EE的养分消化率无影响(P > 0.05)。
表 3. 日粮添加褐藻糖胶对断奶仔猪养分消化率的影响 Table 3. Effects of dietary fucoidan on nutrient digestibility of weaned pigs
Items | DM/% | GE/% | CP/% | EE/% | NDF/% | ADF/% |
Basal diet | 93.3±0.1 | 93.2±0.1 | 87.3±0.3 | 43.1±3.9 | 63.6±2.1a | 31.5±2.6b |
Antibiotic group | 92.9±0.5 | 92.6±1.0 | 87.4±0.6 | 53.1±2.3 | 52.2±4.1b | 39.0±4.8ab |
Fucoidan group | 94.9±0.9 | 93.3±0.2 | 88.1±0.3 | 47.8±2.3 | 62.8±1.4a | 49.2±2.1a |
表选项
2.3 褐藻糖胶对断奶仔猪免疫力的影响 如表 4所示,试验各组仔猪血清中IgA、IgG、IgM、TNF-α、IL-1β、IL-6和IL-10含量均无差异显著(P > 0.05);与基础日粮相比,抗生素组和褐藻糖胶组IL-22含量均显著下降(P < 0.05)。
表 4. 日粮中添加褐藻糖胶对断奶仔猪免疫力的影响 Table 4. Effects of dietary fucoidan on immunity of weaned pigs
Items | IgA/(g/L) | IgG/(g/L) | IgM/(g/L) | TNF-α/(pg/mL) | IL-1β/(pg/mL) | IL-6/(pg/mL) | IL-10/(pg/mL) | IL-22/(pg/mL) |
Basal diet | 0.69±0.06 | 20.52±0.36 | 2.36±0.03 | 69.6±4.9 | 40.1±3.9 | 152.2±20.4 | 22.4±2.9 | 195.3±8.9a |
Antibiotic group | 0.64±0.05 | 20.72±0.15 | 2.45±0.05 | 59.0±6.1 | 28.4±4.5 | 120.8±21.5 | 22.4±3.2 | 139.1±16.4b |
Fucoidan group | 0.67±0.04 | 20.81±0.31 | 2.46±0.04 | 50.3±5.3 | 30.4±1.5 | 133.5±14.4 | 27.5±3.6 | 145.5±16.5b |
表选项
2.4 褐藻糖胶对断奶仔猪肠道微生物的影响 如表 5所示,试验第0天和28天,各日粮处理组微生物α-多样性Chao 1和Shannon指数差异不显著。试验第14天,褐藻糖胶组Chao 1和Shannon指数都显著高于基础日粮组(P < 0.05),而抗生素和褐藻糖胶组Chao 1和Shannon指数差异不显著(P > 0.05)。
表 5. 日粮添加褐藻糖胶对肠道菌群α-多样性的影响 Table 5. Effects of dietary fucoidan on α-diversity of gut microbiota of weaned pigs
Items | Basal diet | Antibiotic group | Fucoidan group |
Chao 1 index | |||
day 0 | 490.9±23.4 | 485.0±17.3 | 441.8±22.4 |
day 14 | 530.2±29.1b | 608.5±7.2ab | 679.9±10.4a |
day 28 | 671.3±31.0 | 652.2±21.4 | 681.7±12.6 |
Shannon index | |||
day 0 | 3.97±0.15 | 4.01±0.18 | 3.97±0.15 |
day 14 | 3.66±0.29b | 4.40±0.13ab | 4.60±0.11a |
day 28 | 4.43±0.16 | 4.35±0.33 | 3.92±0.24 |
表选项
图 1-A所示,试验28 d中,Firmicutes、Bacteroidetes、Proteobacteria、Tenericutes、Actinobacteria和Spirochaetae是各试验组中仔猪肠道的主要微生物,这6种菌群总丰度达99%以上;其中,Firmicutes和Bacteroidetes是最重要的菌群,这2类微生物试验期间的丰度为93%–95%之间。试验第0天,各处理组Firmicutes和Bacteroidetes相对丰度差异不显著(P > 0.05);试验第14天,与对照组相比,抗生素组和褐藻糖胶组中Bacteroidetes呈上升趋势(P=0.07);试验第28天,抗生素组和褐藻糖胶组Actinobacteria均显著高于对照组(P < 0.05)。
图 1 日粮添加褐藻糖胶对断奶仔猪肠道菌群结构组成的影响 Figure 1 The effect of dietary fucoidan on gut microbiota composition in weaned pigs. A: Influence of dietary treatments on bacterial community structure at the phylum level on days 0, 14 and 28. B: Influence of dietary treatments on bacterial community structure at the genus level on days 0, 14 and 28. CON, control group; ANT, antibiotic group; FUC, fucoidan group. |
图选项 |
图 1-B呈现了属水平上微生物平均相对丰度大于1%的肠道菌群组成。试验第0天,主要微生物群落包括Subdoligranulum、Bacteroidales_S24-7_group、Prevotella_1、Faecalibacterium、Prevotellaceae_NK3B31_group和Prevotella_9;不同日粮处理组的微生物丰度差异不显著。试验第14天,仔猪肠道中Lactobacillus、Bacteroidales_S24-7_group、Christensenellaceae_R-7_group、norank_f__Erysipelotrichaceae、Ruminococcaceae_UCG-005、Eubacterium_coprostanoligenes_group、Ruminococcaceae_UCG-002和Bacteroides菌群相对丰度较高;同时,褐藻糖胶日粮组的Christensenellaceae_R-7_group和Bacteroides含量显著高于对照组和抗生素对照组(P < 0.05)。试验第28天,相对丰度较高的核心菌群有Christensenellaceae_R-7_group、Bacteroidales_ S24-7_group、norank_f_Erysipelotrichaceae、Ruminococcaceae_UCG-002、Lactobacillus、Streptococcus和Bacteroides;并且褐藻糖胶日粮处理组Bacteroides含量显著高于对照组和抗生素组(P < 0.05)。
3 讨论 海藻及其提取物作为畜禽饲料研究始于20世纪50年代的挪威。海藻多糖作为一种天然绿色的植物性饲料添加剂,具有提高动物生长性能和机体免疫力的功效,受到营养学家的关注。我国拥有丰富的海藻资源,海藻产量占据世界海藻总产量的50%以上[10]。然而,目前海藻多糖在畜牧业中对畜禽的应用及其作用机制还处于初步探讨阶段。本试验为了研究褐藻糖胶对单胃动物肠道健康的作用机制,根据纯合日粮在动物试验中的应用[11-12],采用玉米淀粉-大豆分离蛋白替代传统日粮中的玉米和豆粕,将基础日粮中的膳食纤维含量降低到0.3%,研究日粮添加海藻糖胶对断奶仔猪生长性能、养分消化率和机体免疫力的影响,重点探讨海藻胶日粮干预后仔猪肠道中微生物组成的变化特征。此外,依据我国饲料中抗生素允许添加量的规定,试验抗生素组添加75 mg/kg金霉素,由于试验猪场良好的卫生环境和完善的动物疾病防控,试验仔猪健康状态良好,试验期没有出现严重的腹泻和疾病的发生。
受到海藻提取物种类、抽提方法和添加剂量等因素影响,试验动物在生长性能和肠道健康方面表现出不同的功效。McDonnell等报道,日粮添加0.3 g/kg海带淀粉和0.24 g/kg褐藻糖胶,断奶仔猪ADG和FCR得到了显著改善[13];相似地,O’Doherty等在日粮中添加2.8 g/kg海带提取物,显著增加了新生仔猪的ADG,显著降低了FCR[14]。本试验结果表明,试验全期日粮添加褐藻糖胶对断奶仔猪ADG、ADFI和FCR均无显著影响,这与Reilly等在日粮添加不同海藻提取物观察到的断奶仔猪生长性能一致[15]。然而,试验0–14 d海藻糖胶日粮组的FCR显著低于对照组和抗生素组;虽然褐藻糖胶处理组ADG和ADFI在统计学上无显著差异,但降低的FCR表明日粮添加褐藻糖胶有效改善了仔猪耗料增重比。试验15–28 d,仔猪肠道菌群恢复稳态,免疫系统趋向成熟,这可能是削弱日粮褐藻糖胶对仔猪生长性能干预作用的主要原因。Garider等报道,生长猪饲喂海藻提取物,其日增重随着提取物添加量增加呈线性递减,这与提取物中含有多酚类等物质有关[16]。根据海藻提取物在猪日粮的应用报道,并结合海藻糖胶体外发酵特征[17],本试验日粮海藻糖胶添加量为安全药理剂量500 mg/kg。此外,日粮中添加褐藻糖胶显著提高了断奶仔猪对NDF和ADF利用率。文献报道,海藻多糖作为功能性添加剂能够提高仔猪日粮的养分消化率[14, 18]。本试验观察到,褐藻糖胶组升高的NDF和ADF养分消化率,可能与基础配方中纤维含量极低引起的计算误差有关。
多糖作为信号分子广泛参与机体多种生理活性,如识别细胞间的受体和配体、传递细胞间信号分子、调节细胞增殖、分化及凋亡等一系列生理活动[19]。褐藻多糖具有一定的免疫原性,可以刺激免疫活性细胞,如单核细胞和巨噬细胞分泌细胞因子、T淋巴细胞和B淋巴细胞的分化、成熟和繁殖,进而调节宿主的免疫反应。据报道,海藻提取物褐藻糖胶能刺激巨噬细胞增殖和一氧化氮的分泌,进而调节机体的免疫性能[20]。研究表明,海带多糖能够下调结肠促炎细胞因子IL-1β、TNF-α和IL-17A表达量;饲粮中添加掌状海带和极北海带提取物,试验第6天观察到断奶仔猪IL-8基因表达量显著上升[15]。此外,母猪饲喂海带提取物后初乳中IgG含量显著升高,并且该母猪产下的乳猪在哺乳第5天的IgG和IgA含量显著上升[5]。本试验中,日粮添加抗生素或者褐藻糖胶对血清IgA、IgG、IgM、TNF-α、IL-1β、IL-6和IL-10水平无影响,这可能和试验基础日粮中纤维含量低有关。IL-10是重要的炎症抑制因子,具有调节细胞活性的功能。日粮纤维的代谢产物短链脂肪酸可以激活免疫细胞T细胞的G蛋白偶联受体[21],促进IL-10分泌。IL-22是促炎性细胞因子,目前多数观点认为Th1、Th2、Th17和Th22细胞均可以分泌IL-22。肠道中微生物可以刺激IL-22分泌,不仅可以增强肠上皮细胞增殖,还能促进Reg 3γ等抗菌物质的合成,从而修复急性炎症对肠道造成的损伤[22]。日粮中添加菊粉可以上调IL-22基因的表达量,调节高脂日粮诱发的小鼠代谢紊乱,恢复肠道微生态的内稳定[23]。然而在本研究中,日粮添加抗生素或者褐藻糖胶显著降低了IL-22含量,表明海藻糖胶有类似金霉素的抗炎调节作用。IL-22究竟如何影响肠道微生物组成进而调节机体的抗炎能力将有待于进一步深入研究。
海带提取物褐藻酸钠、褐藻淀粉和褐藻糖胶均是可溶性膳食纤维,可以被肠道中微生物发酵利用,生成中、短链脂肪酸,不仅降低肠道pH值,也为肠道微生物和宿主细胞提供能量,维持肠道菌群稳态。本试验16S rRNA扩增子测序结果表明,仔猪断奶0天到试验第28天,Firmicutes和Bacteroidetes是门水平上最主要的微生物,其总丰度在93%以上,这与文献报道一致[24]。同时观察到,试验开始阶段仔猪体内Actinobacteria丰度较高,当试验动物喂饲低纤维日粮后,试验第14和28天肠道中Proteobacteria数量较高,这与已有研究报道一致[25]。试验第14天,褐藻糖胶组α-多样性Chao 1和Shannon指数显著高于对照组,表明日粮中添加褐藻糖胶提高了微生物群落的丰富度和多性样;该结果与日粮添加褐藻糖胶显著降低0–14 d的FCR一致。已有研究表明,norank_f_Bacteroidales_S24-7_group属细菌可以降解肠道内的多糖底物,包括植物半纤维素和果胶、宿主分泌的糖蛋白和微生物分泌的α-葡聚糖等。同时,S24-7部分成员参与主动免疫IgA的标记和分化,对肠道中微生态群落平衡发挥着重要作用[26]。本研究表明,S24-7是断奶后0、14和28天仔猪肠道中核心菌群之一。此外,仔猪断奶第14和28天,褐藻糖胶处理组中Bacteroides属的丰度高于对照组和抗生素组,表明Bacteroides参与了褐藻糖胶的降解和利用。属水平的S24-7和Bacteroides是健康肠道中重要微生物,这些革兰氏阴性菌拥有降解和转运碳水化合物的多糖利用基因座(Polysaccharide utilization loci, PULs),根据肠道环境中营养的动态变化,不同Bacteroides菌群PULs可以针对性合成利用底物的碳水化合物活性酶(Carbohydrate-active enzyme, CAZy),最常见的有淀粉酶、糖苷水解酶和多糖水解酶[27]。因此,食物中碳水化合物组成是影响肠道中菌群组成及其功能的关键因素之一。褐藻糖胶是水溶性膳食纤维,主要含有岩藻糖、半乳糖、甘露糖、木糖、葡萄糖、阿拉伯糖和糖醛酸等成分,其特有的硫酸多酯化学结构可能会引起菌群功能的变化。据报道,目水平上的Bacteroidales含有大量利用岩藻糖和N-乙酰葡萄糖胺转运载体的基因[28]。有关Bacteroides降解植物和宿主多糖的能力及其复杂的CAZy已有研究报道[29],而Bacteroides和褐藻糖胶之间的相互作用还有待于进一步探讨。此外,试验第14和28天褐藻糖胶组中Christensenellaceae_R-7_group丰度较高。有研究证明,Christensenellaceae_R-7_group能够调节脂质代谢,降低机体肥胖症的发生[30];本试验结果表明,褐藻糖胶促进了肠道健康菌Christensenellaceae_R-7_group生长,提示褐藻糖胶对脂质代谢的影响,在今后研究中需要重点关注。
4 结论 日粮添加褐藻糖胶改善了仔猪断奶前期的耗料增重比,提高了中、酸性洗涤纤维消化率和机体抗炎反应;褐藻糖胶干预后增加了仔猪肠道微生物多样性,尤其是Bacteroidetes属的丰富度。这些生理变化有助于仔猪建立健康而稳定的肠道微生态环境,更好适应下一阶段的生长。
References
[1] | Lallès JP, Bosi P, Smidt H, Stokes CR. Nutritional management of gut health in pigs around weaning. Proceedings of the Nutrition Society, 2007, 66(2): 260-268. DOI:10.1017/S0029665107005484 |
[2] | Van Boeckel TP, Glennon EE, Chen D, Gilbert M, Robinson TP, Grenfell BT, Levin SA, Bonhoeffer S, Laxminarayan R. Reducing antimicrobial use in food animals. Science, 2017, 357(6358): 1350-1352. DOI:10.1126/science.aao1495 |
[3] | Lü HT, Gao YJ, Shan H, Lin YT. Preparation and antibacterial activity studies of degraded polysaccharide selenide from Enteromorpha prolifera. Carbohydrate Polymers, 2014, 107: 98-102. DOI:10.1016/j.carbpol.2014.02.045 |
[4] | Heim G, Sweeney T, O'Shea CJ, Doyle DN, O'Doherty JV. Effect of maternal supplementation with seaweed extracts on growth performance and aspects of gastrointestinal health of newly weaned piglets after challenge with enterotoxigenic Escherichia coli K88. British Journal of Nutrition, 2014, 112(12): 1955-1965. DOI:10.1017/S0007114514003171 |
[5] | Leonard SG, Sweeney T, Bahar B, Lynch BP, O'Doherty JV. Effects of dietary seaweed extract supplementation in sows and post-weaned pigs on performance, intestinal morphology, intestinal microflora and immune status. British Journal of Nutrition, 2011, 106(5): 688-699. DOI:10.1017/S0007114511000997 |
[6] | Devillé C, Damas J, Forget P, Dandrifosse G, Peulen O. Laminarin in the dietary fibre concept. Journal of the Science of Food and Agriculture, 2004, 84(9): 1030-1038. DOI:10.1002/(ISSN)1097-0010 |
[7] | Zhu WH, Guan HS, Xia X. Research progress of brown algae extracts in production of swine and poultry. Feed Industry, 2014, 35(20): 1-6. (in Chinese) 朱文慧, 管华诗, 夏萱. 褐藻提取物及其在猪、鸡生产中的应用研究进展. 饲料工业, 2014, 35(20): 1-6. |
[8] | Marais MF, Joseleau JP. A fucoidan fraction from Ascophyllum nodosum. Carbohydrate Research, 2001, 336(2): 155-159. DOI:10.1016/S0008-6215(01)00257-9 |
[9] | Okolie CL, Rajendran SRCK, Udenigwe CC, Aryee ANA, Mason B. Prospects of brown seaweed polysaccharides (BSP) as prebiotics and potential immunomodulators. Journal of Food Biochemistry, 2017, 41(5): e12392. DOI:10.1111/jfbc.2017.41.issue-5 |
[10] | Sun C. Resource development and degradation mechanism study of brown-seaweed degrading bacteria based on polyphasic taxonomy and genomics. Doctor Dissertation of Zhejiang University, 2016. (in Chinese) 孙聪.基于多相分类学及基因组学的褐藻降解细菌的资源开发及降解机制研究.浙江大学博士学位论文, 2016. |
[11] | Chen H, Wang W, Degroote J, Possemiers S, Chen DW, de Smet S, Michiels J. Arabinoxylan in wheat is more responsible than cellulose for promoting intestinal barrier function in weaned male piglets. The Journal of Nutrition, 2015, 145(1): 51-58. |
[12] | Trompette A, Gollwitzer ES, Yadava K, Sichelstiel AK, Sprenger N, Ngom-Bru C, Blanchard C, Junt T, Nicod LP, Harris NL, Marsland BJ. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nature Medicine, 2014, 20(2): 159-166. DOI:10.1038/nm.3444 |
[13] | McDonnell P, Figat S, O'Doherty JV. The effect of dietary laminarin and fucoidan in the diet of the weanling piglet on performance, selected faecal microbial populations and volatile fatty acid concentrations. Animal, 2010, 4(4): 579-585. DOI:10.1017/S1751731109991376 |
[14] | O'Doherty JV, Dillon S, Figat S, Callan JJ, Sweeney T. The effects of lactose inclusion and seaweed extract derived from Laminaria spp. on performance, digestibility of diet components and microbial populations in newly weaned pigs. Animal Feed Science and Technology, 2010, 157(3/4): 173-180. |
[15] | Reilly P, O'Doherty JV, Pierce KM, Callan JJ, O'Sullivan JT, Sweeney T. The effects of seaweed extract inclusion on gut morphology, selected intestinal microbiota, nutrient digestibility, volatile fatty acid concentrations and the immune status of the weaned pig. Animal, 2008, 2(10): 1465-1473. DOI:10.1017/S1751731108002711 |
[16] | Gardiner GE, Campbell AJ, O'Doherty JV, Pierce E, Lynch PB, Leonard FC, Stanton C, Ross RP, Lawlor PG. Effect of Ascophyllum nodosum extract on growth performance, digestibility, carcass characteristics and selected intestinal microflora populations of grower-finisher pigs. Animal Feed Science and Technology, 2008, 141(3/4): 259-273. |
[17] | Kong Q, Dong SY, Gao J, Jiang CY. In vitro fermentation of sulfated polysaccharides from E. prolifera and L. japonica by human fecal microbiota. International Journal of Biological Macromolecules, 2016, 91: 867-871. DOI:10.1016/j.ijbiomac.2016.06.036 |
[18] | You JM, Guo XB, Wang ZR, Zou TD, Yang J. Immunomodulatory regulate of seaweed polysaccharides and its application in animal production. Feed Industry, 2017, 38(20): 1-5. (in Chinese) 游金明, 郭晓波, 王自蕊, 邹田德, 杨晋. 海藻多糖的免疫调节作用及其在畜禽生产中的应用. 饲料工业, 2017, 38(20): 1-5. |
[19] | Wang YF, Meng QY. Advances in the study on immunoregulation effect of algal polysaccharides and its mechanism. Chinese Marine Drugs, 2006, 25(3): 50-54. (in Chinese) 王亚飞, 孟庆勇. 藻类多糖的免疫调节作用及机制研究进展. 中国海洋药物, 2006, 25(3): 50-54. DOI:10.3969/j.issn.1002-3461.2006.03.013 |
[20] | Jose GM, Kurup GM. The efficacy of sulfated polysaccharides from Padina tetrastromatica in modulating the immune functions of RAW 264.7 cells. Biomedicine & Pharmacotherapy, 2017, 88: 677-683. |
[21] | Begue B, Verdier J, Rieux-Laucat F, Goulet O, Morali A, Canioni D, Hugot JP, Daussy C, Verkarre V, Pigneur B, Fischer A, Klein C, Cerf-Bensussan N, Ruemmele FM. Defective IL10 signaling defining a subgroup of patients with inflammatory bowel disease. The American Journal of Gastroenterology, 2011, 106(8): 1544-1555. DOI:10.1038/ajg.2011.112 |
[22] | Lindemans CA, Calafiore M, Mertelsmann AM, O'Connor MH, Dudakov JA, Jenq RR, Velardi E, Young LF, Smith OM, Lawrence G, Ivanov JA, Fu YY, Takashima S, Hua GQ, Martin ML, O'Rourke KP, Lo YH, Mokry M, Romera-Hernandez M, Cupedo T, Dow LE, Nieuwenhuis EE, Shroyer NF, Liu C, Kolesnick R, van den Brink MRM, Hanash AM. Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. Nature, 2015, 528(7583): 560-564. DOI:10.1038/nature16460 |
[23] | Zou J, Chassaing B, Singh V, Pellizzon M, Ricci M, Fythe MD, Kumar MV, Gewirtz AT. Fiber-mediated nourishment of gut microbiota protects against diet-induced obesity by restoring IL-22-mediated colonic health. Cell Host & Microbe, 2018, 23(1): 41-53. |
[24] | Schokker D, Zhang J, Zhang LL, Vastenhouw SA, Heilig HGHJ, Smidt H, Rebel JMJ, Smits MA. Early-life environmental variation affects intestinal microbiota and immune development in new-born piglets. PLoS ONE, 2014, 9(6): e100040. DOI:10.1371/journal.pone.0100040 |
[25] | Koropatkin NM, Cameron EA, Martens EC. How glycan metabolism shapes the human gut microbiota. Nature Reviews Microbiology, 2012, 10(5): 323-335. DOI:10.1038/nrmicro2746 |
[26] | Ormerod KL, Wood DLA, Lachner N, Gellatly SL, Daly JN, Parsons JD, Dal'Molin CGO, Palfreyman RW, Nielsen LK, Cooper MA, Morrison M, Hansbro PM, Hugenholtz P. Genomic characterization of the uncultured Bacteroidales family S24-7 inhabiting the guts of homeothermic animals. Microbiome, 2016, 4(1): 36. DOI:10.1186/s40168-016-0181-2 |
[27] | Sonnenburg ED, Zheng HJ, Joglekar P, Higginbottom SK, Firbank SJ, Bolam DN, Sonnenburg JL. Specificity of polysaccharide use in intestinal bacteroides species determines diet-induced microbiota alterations. Cell, 2010, 141(7): 1241-1252. DOI:10.1016/j.cell.2010.05.005 |
[28] | Wlodarska M, Luo CW, Kolde R, d'Hennezel E, Annand JW, Heim CE, Krastel P, Schmitt EK, Omar AS, Creasey EA, Garner AL, Mohammadi S, O'Connell DJ, Abubucker S, Arthur TD, Franzosa EA, Huttenhower C, Murphy LO, Haiser HJ, Vlamakis H, Porter JA, Xavier RJ. Indoleacrylic acid produced by commensal Peptostreptococcus species suppresses inflammation. Cell Host & Microbe, 2017, 22(1): 25-37. |
[29] | Desai MS, Seekatz AM, Koropatkin NM, Kamada N, Hickey CA, Wolter M, Pudlo NA, Kitamoto S, Terrapon N, Muller A, Young VB, Henrissat B, Wilmes P, Stappenbeck TS, Nú?ez G, Martens EC. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell, 2016, 167(5): 1339-1353. DOI:10.1016/j.cell.2016.10.043 |
[30] | Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R, Beaumont M, van Treuren W, Knight R, Bell JT, Spector TD, Clark AG, Ley RE. Human genetics shape the gut microbiome. Cell, 2014, 159(4): 789-799. DOI:10.1016/j.cell.2014.09.053 |