删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

极端嗜热古菌DNA修复核酸内切酶的研究进展

本站小编 Free考研考试/2021-12-26

极端嗜热古菌DNA修复核酸内切酶的研究进展
李玉婷, 史昊强, 张立奎
扬州大学环境科学与工程学院海洋科学研究所, 江苏 扬州 225127
收稿日期:2018-12-21;修回日期:2019-02-26;网络出版日期:2019-03-07
基金项目:扬州大学中青年学术带头人项目;江苏省大学生科技创新项目(201711117059Y)
*通信作者:张立奎, Tel:+86-514-89795882, E-mail:lkzhang@yzu.edu.cn.

摘要:极端嗜热古菌由于生活在高温环境,其基因组DNA面临着严重的挑战,因此,它们如何维持其基因组稳定是本研究领域最为关注的科学问题之一。极端嗜热古菌具有与常温微生物相似的自发突变频率,暗示着它们比常温微生物具有更加有效的DNA修复体系进行修复高温所造成的基因组DNA损伤。目前,极端嗜热古菌DNA修复的分子机制尚不清楚。核酸内切酶在DNA修复途径中发挥着重要的作用。基因组序列显示极端嗜热古菌编码多种DNA修复核酸内切酶,但是其研究尚处于初期阶段。本文综述了极端嗜热古菌DNA修复核酸内切酶NucS、EndoV、EndoQ、XPF和Hjc的研究进展,并对今后的研究提出了展望。
关键词:极端嗜热古菌核酸内切酶DNA修复
Research progress of hyperthermophilic archaeal DNA repair endonucleases
Yuting Li, Haoqiang Shi, Likui Zhang
Marine Science & Technology Institute, Department of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu Province, China
Received: 21 December 2018; Revised: 26 February 2019; Published online: 7 March 2019
*Corresponding author: Likui Zhang, Tel: +86-514-89795882; E-mail: lkzhang@yzu.edu.cn.
Foundation item: Supported by the Academic Leader of Middle and Young People of Yangzhou University Grant and by the Practice Innovation Training Program for College Students in Jiangsu (201711117059Y)

Abstract: Hyperthermophilic archaea are facing severe challenges due to their high temperature environment. Therefore, how to maintain genomic stability of hyperthermophilic archaea is one of the most important scientific questions in this field. Hyperthermophilic archaea have similar spontaneous mutation frequencies to mesophilic microorganisms, suggesting that they have a more efficient DNA repair system than mesophilic microorganisms to repair genomic DNA damage caused by high temperature. At present, the molecular mechanism of DNA repair of hyperthermophilic archaea is still unclear. Endonucleases play an important role in the DNA repair pathway. Genomic sequences show that hyperthermophilic archaea encode a few DNA repair endonucleases, however, the research on them is still in an early stage. In this paper, we reviewed the research progress of hyperthermophilic archaeal DNA repair endonucleases, including NucS, EndoV, EndoQ, XPF and Hjc. We also proposed future studies.
Keywords: hyperthermophilic archaeaendonucleaseDNA repair
作为第三种生命形式,古菌在全球的生物地球化学作用中扮演着不可替代的角色。古菌细胞具有无细胞核的单细胞超微结构,与细菌细胞相似,但在DNA信息传递方面与真核细胞有很高的相似性[1],暗示着古菌是真核生物DNA复制和DNA修复系统的理想模型。近年来,随着宏基因组及单细胞基因组测序技术的发展,人们发现了许多之前未被鉴定的古菌,很大程度上丰富了古菌的分类系统[2]。基于其独特的进化地位、代谢途径、生长环境和分布范围,古菌已成为微生物学家关注的热点之一。
极端嗜热古菌是指最适生长温度在80 ℃以上的古菌[3],主要发现于大洋底部的高压热液口、火山口、陆地热泉等高温环境。自从于黄石公园分离出第一个极端嗜热古菌Sulfolobus acidocaldarius以来,目前已有90多种极端嗜热古菌被发现[3],几乎涵盖所有的泉古菌、部分广古菌和少数其他古菌。开展极端嗜热古菌的研究,不仅有利于了解高温环境下生命的适应机制,开发嗜热酶,而且对于分析生命起源、研究生命进化规律具有重要参考价值。
极端嗜热古菌生存的高温环境加剧了基因组DNA的损伤,其基因组面临着严重的挑战[4],因此,极端嗜热古菌如何维持其基因组稳定性是本研究领域最为关注的科学问题之一。研究发现,高温会加速碱基的脱氨基反应,形成损伤碱基(腺嘌呤、鸟嘌呤和胞嘧啶的脱氨基分别生成次黄嘌呤、黄嘌呤和尿嘧啶)[5]。高温也会加剧DNA碱基的水解,造成基因组积累过多的AP (apurinic/apyrimidinic)位点[6]。例如,极端嗜热古菌Pyrococcus abyssi基因组中AP位点的含量比大肠杆菌高10倍[7]。如果这些损伤碱基得不到修复,进一步的复制将会引起基因的突变。但是,极端嗜热古菌S. acidocaldarius与常温微生物具有相似的自发突变频率[8],暗示着极端嗜热古菌具有比常温微生物更为强大的DNA修复系统应对高温对其基因组DNA的挑战。
极端嗜热古菌的DNA修复途径一直受到人们的关注。目前,基因组数据显示,极端嗜热古菌编码多种参与DNA修复的相关蛋白[9],但缺少MMR (mismatch repair)途径中MutS/MutL同源物[10]。生化性质和晶体结构的数据阐明了一些极端嗜热古菌DNA修复蛋白的催化机制及其介导的修复途径[9]。但是,目前极端嗜热古菌的DNA修复机制尚不清楚。核酸内切酶在DNA修复途径中发挥着重要的作用。本文总结了极端嗜热古菌DNA修复核酸内切酶NucS、EndoV、EndoQ、XPF和Hjc的研究进展,并对今后的研究提出了展望。
1 古菌核酸内切酶NucS 古菌核酸内切酶NucS首次在极端嗜热古菌P. abyssi中被发现。对其生化性质的研究表明,该酶能够切割侧翼和叉形结构的ssDNA[11]。晶体结构表明,Pab-NucS为二聚体,并且该酶能够与滑动夹PCNA(proliferating cell nuclear antigen)相互作用[11],从而将该酶招募到DNA复制叉上。
最近,Ishino等发现极端嗜热古菌Pyrococcus furiosus核酸内切酶NucS能够切割错配的DNA,并将该酶命名为EndoMS[12],暗示着该酶参与了错配修复,从而为阐述极端嗜热古菌的错配修复途径提供了重要的启示。对极端嗜热古菌Thermococcus kodakarensis的核酸内切酶EndoMS的研究发现,该酶能够切割含有错配碱基的DNA双链,其切割产物留下5个碱基的5′突出端(图 1)[12]。进一步的研究发现,Tko (Thermococcus kodakarensis)-EndoMS对错配DNA比对分支或ssDNA具有更高的亲和力。另外,Tko-EndoMS的晶体结构显示,该酶包裹错配的DNA底物,翻出两个碱基并以与Ⅱ型限制性核酸内切酶相似的方式切割DNA磷酸二酯键[13]。此外,Tko-EndoMS具有对G:T、G:G、T:T、T:C和A:G错配切割活性,但在体外不能切割C:C、A:C或A:A错配[12],这与该酶对含有不匹配G或T的底物具有更高亲和力相一致[13]
图 1 Tko-EndoMS介导的DNA中错配(G:T)的修复[12] Figure 1 Repair of mismatch (G:T) in DNA remediated by Tko-EndoMS[12].
图选项





核酸内切酶NucS在古菌中具有广泛的分布,存在于一些极端嗜热古菌和嗜盐古菌中。核酸内切酶NucS也存在于一些细菌中,通常存在不含有MutS/MutL的Actinobacteria门。最新的研究发现,Mycobacterium smegmatis中核酸内切酶NucS的缺失会使突变率增加约100倍,从而导致超突变表型。增加的突变率是由于碱基转换(A:T至G:C转换或G:C至A:T转换)水平升高所引起,这些转换是典型MMR缺陷所引起的突变[14]。此外,敲除Streptomyces coelicolor核酸内切酶NucS的基因后,也观察到类似的结果[14]
2 古菌核酸内切酶Ⅴ 如前文所述,高温会使极端嗜热古菌基因组DNA积累更多的尿嘧啶、次黄嘌呤或AP位点。存在于所有的生物体中的碱基切除修复(base excision repair,BER),是修复上述损伤碱基的经典途径[15]。除了经典的BER之外,选择性切除修复(alternative excision repair,AER)也是修复尿嘧啶、次黄嘌呤或AP位点的途径之一。通常,AER途径首先由核酸内切酶所引发,即核酸内切酶在损伤碱基的附近切割DNA的磷酸二酯键,产生一个切口[16]
核酸内切酶Ⅴ (EndoⅤ)是介导AER途径中第一个被研究的核酸内切酶,它能够识别和切割含有次黄嘌呤的DNA,其切割位点为损伤碱基次黄嘌呤下游3′端的第二个磷酸二酯键(图 2)。EndoV最初在大肠杆菌中被鉴定出,由nif基因所编码。对E. coli nif突变株的分析显示,E. coli-EndoV在细胞内次黄嘌呤的修复中发挥了重要的作用。除此之外,在细胞外该酶对AP位点、侧翼DNA和Y-型DNA结构等DNA底物具有内切酶活性[17]。EndoV同源蛋白非常保守,存在于三域生物中[18]。然而,具有EndoV同源基因介导的AER途径在古菌细胞中是否起实际作用尚未确定。
图 2 EndoQ和EndoV介导的DNA中次黄嘌呤的修复 Figure 2 Repair of hypoxanthine in DNA mediated by EndoQ and EndoV. Endo: Endonuclease; Hel: Helicase; Pol: Polymerase; Lig: Ligase.
图选项





目前,已有几种极端嗜热古菌EndoV被报道具有不同的功能。Archaeoglobus fulgidusP. furiosus的EndoV蛋白在体外对含次黄嘌呤的底物具有严格的特异性[19-20]。而Ferroplasma acidarmanus-EndoV由O6-烷基鸟嘌呤-DNA烷基转移酶结构域和EndoV结构域组成,在体外能够切割含有尿嘧啶、次黄嘌呤、黄嘌呤碱基的DNA底物[21],表明,该酶对脱氨基的碱基具有更广泛的特异性。
我们实验室最近从极端嗜热古菌Thermococcus barophilus Ch5基因组中克隆表达并纯化了EndoV,简写为Tba-EndoV[22]。对其生化性质研究发现,该酶专一性地切割含有次黄嘌呤的DNA,并且切割含有次黄嘌呤的ssDNA底物的效率比切割含有次黄嘌呤的dsDNA底物的效率要高。凝胶阻滞实验结果表明,Tba-EndoV结合含有次黄嘌呤的ssDNA底物的能力比结合含有次黄嘌呤的dsDNA底物的能力要强,这与其切割活性相一致。
3 古菌核酸内切酶Q 除了EndoV介导AER途径进行修复损伤DNA之外,最近,已在极端嗜热古菌P. furiosus中鉴定得到第二个核酸内切酶,命名为EndoQ[23]。研究发现,Pfu-EndoQ能够切割尿嘧啶、次黄嘌呤或无碱基位点的5′端的DNA磷酸二酯键[24],形成一个切口,但是后续的修复途径尚未阐明(图 3)。Pfu-EndoQ具有PHP domain,包含了一些C和X家族的DNA聚合酶中保守的结构域。此外,Pfu-EndoQ的C末端含有4个Cys残基,是EndoQ家族的特征。
图 3 EndoQ介导的DNA中尿嘧啶的修复 Figure 3 Repair of uracil in DNA mediated by EndoQ.
图选项





与EndoV相比,EndoQ酶在古菌中具有狭窄的分布[24]。基因组序列显示EndoQ仅仅存在于Thermococcales和产甲烷菌中,而大多数细菌和真核生物中不存在EndoQ。EndoQ有限的分布,暗示了该酶参与损伤碱基的专一性修复途径。
研究发现,Pfu-EndoQ与滑动夹PCNA蛋白相互作用[25],这可能有助于将酶招募至复制叉,然后该酶切割损伤DNA产生的缺口被解旋酶、核酸内切酶FEN1 (flap endonuclease 1)、DNA聚合酶和DNA连接酶协同作用,从而完成修复。但是,目前相关的作用机理尚不清楚。
进一步的研究发现,源自极端嗜热古菌P. furiosus中的EndoQ和EndoV单独作用于损伤碱基的修复[23],在损伤碱基的两侧形成两个切口(图 2)。然后,由DNA解旋酶、DNA聚合酶和DNA连接酶完成修复[24]
4 古菌核酸内切酶XPF XPF (xeroderma pigmentosum F)是真核生物核苷酸切除修复(nucleotide excision repair,NER)体系的重要组分之一。除了Thermoplasmatales之外,所有的古菌均编码核酸内切酶XPF蛋白。根据门的不同,古菌包含不同的XPF同源物。属于泉古菌门的极端嗜热古菌Sulfolobus solfataricusAeropyrum pernix具有相对短的XPF同源物,其C末端含有与PCNA相互作用的结构域,并且其切割活性依赖于PCNA[26-27]。相反,属于广古菌门的P. furiosus具有相对长的XPF同源物,并且命名为Hef (helicase associated endonuclease for forked structure,作用于叉形结构核酸内切酶相关的解旋酶)[28]P. furiosus Hef蛋白与DEAH解旋酶家族成员和XPF/Mus81核酸酶超家族成员具有序列相似性[28]。Pfu-Hef具有功能性的解旋酶活性,在序列上位于N末端,能够促进其核酸内切酶的活性[29]。Pfu-Hef蛋白N端的ATP水解酶和解旋酶活性以及C端的核酸内切酶活性,相互协调作用于停滞的复制叉[29]
对古菌XPF和Hef蛋白的结构域的分析表明,其核酸酶区域由催化结构域和HhH (Helix-hairpin-Helix)结构域组成。它们在溶液中各自形成二聚体[30]。Hef蛋白的催化结构域显示,它属于限制性核酸内切酶家族,催化结构域和HhH结构域对于该蛋白的活性必不可少[30]。但是,该蛋白如何识别分支DNA底物尚不清楚。古菌XPF的结构表明,DNA底物主要被HhH结构域所结合,其配对的区域被催化结构域所作用[31]
5 古菌核酸内切酶Hjc Holliday联结体切除酶专一性地作用于同源重组所形成的DNA嵌合体,并切割产生重组的异源双链DNA分子。古菌中也编码同源重组途径中Holliday联结体切除酶。Komori等首先在P. furiosus中发现Holliday联结体切除酶的基因,并命名为Hjc (Holliday junction cleavage)[32]。类似于E. coli中的RuvC,古菌Hjc参与了同源重组和双链断裂修复途径。后来,Kvaratskhelia等在S. solfataricus鉴定出Holliday联结体专一性核酸内切酶Hje (holliday junction endonuclease)。研究发现,Sso-Hje切割Holliday联结体无序列特异性,偏好连续性地切割DNA嵌合体。尽管Sso-Hjc和Sso-Hje具有28%的氨基酸等同性,但是两者切割DNA的模式不同[33],也具有不同的底物专一性[34]。Sso-Hjc通过其C末端的PIP结构域(PCNA-interacting peptide)与PCNA存在相互作用,并且PCNA能够促进Hjc的活性[35]。Sso-Hje的晶体结构表明,它具有灵活的loop,作用于联结体中心。在这个loop中,高度保守的Ser30是该酶活性的关键残基[33]
Hjc在古菌中高度保守,广泛存在于泉古菌和广古菌中。最新的研究表明,S. islandicus Hjc、Sis-PINA (S. islandicus PIN domain-containing ATPase)、Hjm (holliday junction migration)蛋白三者相互作用,共同作用于复制叉的倒退和Holliday联结体的形成与切割[36]。极端嗜热古菌Sulfolobus tokodaii的Hjc能够与RadC2蛋白相互作用,共同参与同源重组[37],还能够抑制用于Holliday联结体分支迁移的DNA解旋酶的活性[38]
Pfu-Hjc的晶体结构表明该酶形成二聚体,两个亚基的折叠完全不同于已报道的Holliday联结体切除酶[39]。Pfu-Hjc突变分析的结果表明该酶的Phe68和Phe72对于形成蛋白质二聚体至关重要,而Glu9、Arg10和Arg25在酶的活性方面具有重要作用[40]
6 总结和展望 极端嗜热古菌核酸内切酶是参与DNA修复的关键酶,它不仅参与了MMR,而且参与了损伤DNA的修复,包括AER、NER和双链断裂的DNA修复。然而,极端嗜热古菌DNA修复核酸内切酶介导的DNA修复途径中的许多重要方面仍有待阐明。
极端嗜热古菌核酸内切酶NucS,是一个多功能酶,能够切割错配DNA和叉形结构的单链DNA。该酶切割错配会造成双链断裂的损伤(图 1),对于细胞似乎是一种危险的策略,除非同源重组非常有效。极端嗜热古菌基因组序列显示介导同源重组的RadA蛋白与NucS核酸内切酶共用一个启动子,暗示着核酸内切酶NucS所产生的DSB (double strand break)能够立刻被RadA所接管。RadA与NucS是否存在相互作用共同完成损伤DNA或错配DNA的修复,是值得探讨的问题。
极端嗜热古菌EndoV和EndoQ介导了AER途径修复损伤的DNA。但是EndoV或EndoQ切除含有损伤碱基的DNA之后,后续的修复机制尚不清楚,值得进一步研究。
利用新的遗传学、生物物理学和分子生物学技术挖掘和研究古菌DNA复制和修复的酶学、途径和分子机理,可以预期在不同的古菌中将会发现更多参与损伤DNA修复的核酸内切酶。

References
[1] Kelman Z, White MF. Archaeal DNA replication and repair. Current Opinion in Microbiology, 2005, 8(6): 669-676. DOI:10.1016/j.mib.2005.10.001
[2] Eme L, Spang A, Lombard J, Stairs CW, Ettema TJG. Archaea and the origin of eukaryotes. Nature Reviews Microbiology, 2017, 15(12): 711-723. DOI:10.1038/nrmicro.2017.133
[3] Stetter KO. A brief history of the discovery of hyperthermophilic life. Biochemical Society Transactions, 2013, 41(1): 416-420. DOI:10.1042/BST20120284
[4] Grogan DW. Hyperthermophiles and the problem of DNA instability. Molecular Microbiology, 1998, 28(6): 1043-1049. DOI:10.1046/j.1365-2958.1998.00853.x
[5] Lindahl T, Nyberg B. Heat-induced deamination of cytosine residues in deoxyribonucleic acid. Biochemistry, 1974, 13(16): 3405-3410. DOI:10.1021/bi00713a035
[6] Lindahl T, Nyberg B. Rate of depurination of native deoxyribonucleic acid. Biochemistry, 1972, 11(19): 3610-3618. DOI:10.1021/bi00769a018
[7] Palud A, Villani G, L'Haridon S, Querellou J, Raffin JP, Henneke G. Intrinsic properties of the two replicative DNA polymerases of Pyrococcus abyssi in replicating abasic sites:possible role in DNA damage tolerance?. Molecular Microbiology, 2008, 70(3): 746-761. DOI:10.1111/j.1365-2958.2008.06446.x
[8] Grogan DW, Carver GT, Drake JW. Genetic fidelity under harsh conditions:analysis of spontaneous mutation in the thermoacidophilic archaeon Sulfolobus acidocaldarius. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(14): 7928-7933. DOI:10.1073/pnas.141113098
[9] White MF, Allers T. DNA repair in the archaea-an emerging picture. FEMS Microbiology Reviews, 2018, 42(4): 514-526.
[10] Grogan DW. Stability and repair of DNA in hyperthermophilic Archaea. Current Issues in Molecular Biology, 2004, 6(2): 137-144.
[11] Ren B, Kühn J, Meslet-Cladiere L, Briffotaux J, Norais C, Lavigne R, Flament D, Ladenstein R, Myllykallio H. Structure and function of a novel endonuclease acting on branched DNA substrates. EMBO Journal, 2009, 28(16): 2479-2489. DOI:10.1038/emboj.2009.192
[12] Ishino S, Nishi Y, Oda S, Uemori T, Sagara T, Takatsu N, Yamagami T, Shirai T, Ishino Y. Identification of a mismatch-specific endonuclease in hyperthermophilic Archaea. Nucleic Acids Research, 2016, 44(7): 2977-2986. DOI:10.1093/nar/gkw153
[13] Nakae S, Hijikata A, Tsuji T, Yonezawa K, Kouyama KI, Mayanagi K, Ishino S, Ishino Y, Shirai T. Structure of the EndoMS-DNA complex as mismatch restriction endonuclease. Structure, 2016, 24(11): 1960-1971. DOI:10.1016/j.str.2016.09.005
[14] Casta?eda-García A, Prieto AI, Rodríguez-Beltrán J, Alonso N, Cantillon D, Costas C, Pérez-Lago L, Zegeye ED, Herranz M, Plociński P, Tonjum T, García de Viedma D, Paget M, Waddell SJ, Rojas AM, Doherty AJ, Blázquez J. A non-canonical mismatch repair pathway in prokaryotes. Nature Communications, 2017, 8: 14246. DOI:10.1038/ncomms14246
[15] Grasso S, Tell G. Base excision repair in Archaea:back to the future in DNA repair. DNA Repair, 2014, 21: 148-157. DOI:10.1016/j.dnarep.2014.05.006
[16] Yasui A. Alternative excision repair pathways. Cold Spring Harbor Perspectives in Biology, 2013, 5(6): a012617.
[17] Yao M, Hatahet Z, Melamede RJ, Kow YW. Purification and characterization of a novel deoxyinosine-specific enzyme, deoxyinosine 3' endonuclease, from Escherichia coli. Journal of Biological Chemistry, 1994, 269(23): 16260-16268.
[18] Cao WG. Endonuclease Ⅴ:an unusual enzyme for repair of DNA deamination. Cellular and Molecular Life Sciences, 2013, 70(17): 3145-3156. DOI:10.1007/s00018-012-1222-z
[19] Liu J, He B, Qing H, Kow YW. A deoxyinosine specific endonuclease from hyperthermophile, Archaeoglobus fulgidus:a homolog of Escherichia coli endonuclease Ⅴ. Mutation Research/DNA Repair, 2000, 461(3): 169-177. DOI:10.1016/S0921-8777(00)00054-9
[20] Kiyonari S, Egashira Y, Ishino S, Ishino Y. Biochemical characterization of endonuclease Ⅴ from the hyperthermophilic archaeon, Pyrococcus furiosus. The Journal of Biochemistry, 2014, 155(5): 325-333. DOI:10.1093/jb/mvu010
[21] Kanugula S, Pauly GT, Moschel RC, Pegg AE. A bifunctional DNA repair protein from Ferroplasma acidarmanus exhibits O6-alkylguanine-DNA alkyltransferase and endonuclease Ⅴ activities. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(10): 3617-3622. DOI:10.1073/pnas.0408719102
[22] Wang YX, Zhang LK, Zhu XY, Li YT, Shi HQ, Oger P, Yang ZH. Biochemical characterization of a thermostable endonuclease Ⅴ from the hyperthermophilic euryarchaeon Thermococcus barophilus Ch5. International Journal of Biological Macromolecules, 2018, 117: 17-24. DOI:10.1016/j.ijbiomac.2018.05.155
[23] Ishino S, Makita N, Shiraishi M, Yamagami T, Ishino Y. EndoQ and EndoV work individually for damaged DNA base repair in Pyrococcus furiosus. Biochimie, 2015, 118: 264-269. DOI:10.1016/j.biochi.2015.06.015
[24] Shiraishi M, Ishino S, Yamagami T, Egashira Y, Kiyonari S, Ishino Y. A novel endonuclease that may be responsible for damaged DNA base repair in Pyrococcus furiosus. Nucleic Acids Research, 2015, 43(5): 2853-2863. DOI:10.1093/nar/gkv121
[25] Shiraishi M, Ishino S, Yoshida K, Yamagami T, Cann I, Ishino Y. PCNA is involved in the EndoQ-mediated DNA repair process in Thermococcales. Scientific Reports, 2016, 6: 25532. DOI:10.1038/srep25532
[26] Roberts JA, Bell SD, White MF. An archaeal XPF repair endonuclease dependent on a heterotrimeric PCNA. Molecular Microbiology, 2003, 48(2): 361-371. DOI:10.1046/j.1365-2958.2003.03444.x
[27] Nishino T, Komori K, Ishino Y, Morikawa K. Structural and functional analyses of an archaeal XPF/Rad1/Mus81 nuclease:asymmetric DNA binding and cleavage mechanisms. Structure, 2005, 13(8): 1183-1192. DOI:10.1016/j.str.2005.04.024
[28] Komori K, Fujikane R, Shinagawa H, Ishino Y. Novel endonuclease in Archaea cleaving DNA with various branched structure. Genes & Genetic Systems, 2002, 77(4): 227-241.
[29] Komori K, Hidaka M, Horiuchi T, Fujikane R, Shinagawa H, Ishino Y. Cooperation of the N-terminal helicase and C-terminal endonuclease activities of Archaeal Hef protein in processing stalled replication forks. Journal of Biological Chemistry, 2004, 279(51): 53175-53185. DOI:10.1074/jbc.M409243200
[30] Nishino T, Komori K, Ishino Y, Morikawa K. X-ray and biochemical anatomy of an archaeal XPF/Rad1/Mus81 family nuclease:similarity between its endonuclease domain and restriction enzymes. Structure, 2003, 11(4): 445-457. DOI:10.1016/S0969-2126(03)00046-7
[31] Newman M, Murray-Rust J, Lally J, Rudolf J, Fadden A, Knowles PP, White MF, McDonald NQ. Structure of an XPF endonuclease with and without DNA suggests a model for substrate recognition. EMBO Journal, 2005, 24(5): 895-905. DOI:10.1038/sj.emboj.7600581
[32] Komori K, Sakae S, Shinagawa H, Morikawa K, Ishino Y. A Holliday junction resolvase from Pyrococcus furiosus:functional similarity to Escherichia coli RuvC provides evidence for conserved mechanism of homologous recombination in Bacteria, Eukarya, and Archaea. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(16): 8873-8878. DOI:10.1073/pnas.96.16.8873
[33] Middleton CL, Parker JL, Richard DJ, White MF, Bond CS. Substrate recognition and catalysis by the Holliday junction resolving enzyme Hje. Nucleic Acids Research, 2004, 32(18): 5442-5451. DOI:10.1093/nar/gkh869
[34] Kvaratskhelia M, White MF. Two Holliday junction resolving enzymes in Sulfolobus solfataricus. Journal of Molecular Biology, 2000, 297(4): 923-932. DOI:10.1006/jmbi.2000.3624
[35] Dorazi R, Parker JL, White MF. PCNA activates the Holliday junction endonuclease Hjc. Journal of Molecular Biology, 2006, 364(3): 243-247. DOI:10.1016/j.jmb.2006.09.011
[36] Zhai BY, DuPrez K, Han XY, Yuan ZL, Ahmad S, Xu C, Gu LC, Ni JF, Fan L, Shen YL. The archaeal ATPase PINA interacts with the helicase Hjm via its carboxyl terminal KH domain remodeling and processing replication fork and Holliday junction. Nucleic Acids Research, 2018, 46(13): 6627-6641. DOI:10.1093/nar/gky451
[37] Wang L, Sheng DH, Han WY, Huang B, Zhu SS, Ni JF, Li J, Shen YL. Sulfolobus tokodaii RadA paralog, stRadC2, is involved in DNA recombination via interaction with RadA and Hjc. Science China Life Sciences, 2012, 55(3): 261-267. DOI:10.1007/s11427-012-4292-0
[38] Li Z, Lu SH, Hou GH, Ma XQ, Sheng DH, Ni JF, Shen YL. Hjm/Hel308A DNA helicase from Sulfolobus tokodaii promotes replication fork regression and interacts with Hjc endonuclease in vitro. Journal of Bacteriology, 2008, 190(8): 3006-3017. DOI:10.1128/JB.01662-07
[39] Nishino T, Komori K, Tsuchiya D, Ishino Y, Morikawa K. Crystal structure of the archaeal holliday junction resolvase Hjc and implications for DNA recognition. Structure, 2001, 9(3): 197-204. DOI:10.1016/S0969-2126(01)00576-7
[40] Komori K, Sakae S, Daiyasu H, Toh H, Morikawa K, Shinagawa H, Ishino Y. Mutational analysis of the Pyrococcus furiosus holliday junction resolvase hjc revealed functionally important residues for dimer formation, junction DNA binding, and cleavage activities. Journal of Biological Chemistry, 2000, 275(51): 40385-40391. DOI:10.1074/jbc.M006294200

相关话题/结构 基因 细胞 环境 微生物