删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Complete genome sequencing and diversity analysis of lipolytic enzymes in Stenotrophomonas maltophil

本站小编 Free考研考试/2021-12-26

Complete genome sequencing and diversity analysis of lipolytic enzymes in Stenotrophomonas maltophilia OUC_Est10
Hao Dong1, Junpeng Rui2, Jianan Sun1, Xiangzhen Li2, Xiangzhao Mao1
1. College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China;
2. Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan Province, China
Received: 3 May 2017; Revised: 5 August 2017; Published online: 15 August 2017
Foundation item: Supported by the National Natural Science Foundation of China (31501516), by the Major Special Science and Technology Projects in Shandong Province (2016YYSP016), by the Applied Basic Research Program of Qingdao (16-5-1-18-jch) and by the Fundamental Research Funds for the Central Universities (201564018)
Corresponding author: Xiangzhao Mao, Tel:+86-532-82031360, Fax:+86-532-82032272, E-mail:xzhmao@ouc.edu.cn.

Abstract: Objective The aim of this study was to study the diversity of lipolytic enzymes in Stenotrophomonas maltophilia OUC_Est10.Methods Ion exchange chromatography, genome sequencing and heterologous expression were used to study the diversity of lipolytic enzymes in Stenotrophomonas maltophilia OUC_Est10.Results Stenotrophomonas maltophilia OUC_Est10 could secret a wide range of lipolytic enzymes (lipases and esterases) as revealed by ion exchange chromatography. The complete genome is of 4668743 bp in length, with an average GC content of 66.25%. Genome annotation indicated the presence of 33 candidate genes whose products possess the predicted lipolytic enzyme activities. Analysis of catalytic features was carried out by expressing five putative lipolytic enzyme genes, and lipolytic enzymes in OUC_Est10 had different catalytic properties.Conclusion We proved that Stenotrophomonas maltophilia OUC_Est10 was a good candidate to produce diverse lipolytic enzymes, with potential applications in various fields.
Key words: Stenotrophomonas maltophiliaseparationlipolytic enzymecomplete genome sequencecatalytic properties
嗜麦芽窄食单胞菌OUC_Est10全基因组测序及脂类水解酶多样性分析
董浩1, 芮俊鹏2, 孙建安1, 李香真2, 毛相朝1
1. 中国海洋大学食品科学与工程学院, 山东 青岛 266003;
2. 中国科学院成都生物研究所, 环境与应用微生物重点实验室, 环境微生物四川省重点实验室, 四川 成都 610041
收稿日期:2017-05-03;修改日期:2017-08-05;网络出版日期:2017-08-15
基金项目:国家自然科学基金(31501516);山东省重大特殊科技项目(2016YYSP016);青岛市应用基础研究项目(16-5-1-18-jch);中央高校基金(201564018)
作者简介:毛相朝,博士,中国海洋大学食品科学与工程学院教授,国家现代农业产业技术体系岗位科学家、教育部霍英东青年教师奖获得者。从事海洋水产资源生物加工的理论与技术研究,注重应用酶工程、代谢工程和发酵工程等生化工程技术进行海洋生物资源的高值化绿色全利用和海洋食品、功效物质的生物制造。主持国家自然科学基金3项、国家虾蟹产业技术体系项目1项、山东省重点研发计划项目1项以及其他省部级课题十几项。以第一作者或通讯作者在Biotechnology AdvancesJournal of Cleaner ProductionMolecular Nutrition and Food ResearchApplied and Environmental MicrobiologyJournal of Functional FoodsJournal of Agricultural and Food Chemistry等期刊发表SCI文章30余篇。获授权发明专利16项,计算机软件著作权1项。以第一完成人荣获教育部技术发明二等奖、海洋工程科学技术二等奖和青岛市科技进步一等奖各1项;2016年,荣获第十五届教育部霍英东青年教师奖、山东省自然科学学术创新奖和山东省优秀博士后等荣誉称号。.
通讯作者:毛相朝, Tel:+86-532-82031360, Fax:+86-532-82032272, E-mail:xzhmao@ouc.edu.cn.

摘要目的 本研究的目的是研究嗜麦芽窄食单胞菌OUC_Est10中脂类水解酶的多样性。方法 使用离子交换层析、全基因组测序和异源表达三种方法研究嗜麦芽窄食单胞菌OUC_Est10中脂类水解酶的多样性。结果 离子交换层析结果显示嗜麦芽窄食单胞菌OUC_Est10可以分泌多种脂类水解酶。通过全基因组测序,我们给出了该菌的全基因组序列,该基因组大小为4668743 bp,GC含量为66.25%。通过详细的基因组序列分析,我们从该基因组中找到33个可能具有脂类水解酶活性的假定基因。通过异源表达OUC_Est10中的5个假定脂类水解酶基因,来研究其催化特性的多样性,结果显示这些脂类水解酶具有不同的催化特性。结论 我们证明了嗜麦芽窄食单胞菌OUC_Est10拥有多样的脂类水解酶,这暗示了它在不同领域中的应用潜力。
关键词:嗜麦芽窄食单胞菌分离脂类水解酶全基因组测序催化特性
Lipolytic enzymes, including esterases (3.1.1.1) and lipases (3.1.1.3), are members of the α/β hydrolase superfamily, which contain a catalytic triad (Ser-His-Asp/Glu)[1]. With the development of industrial biotechnology, lipolytic enzymes are important catalysts in the biological manufacturing processes, such as food, bioenergy, detergent, pharmaceutical and advanced chemical manufacturing[2-3]. Lipolytic enzymes can catalyze the cleavage and formation of ester bonds, and the catalytic mechanisms for esterases and lipases are similar[4]. In organic media, both esterases and lipases catalyze various reactions, such as esterification, transesterification, aminolysis and interesterification[5]. The increasing demand for novel biocatalysts has prompted the development of new methods which are used to screen for new genes, such as genome sequencing.
Stenotrophomonas maltophilia is a Gram-negative bacterium which, in our previous research, has been demonstrated to secrete esterases and lipases to prepare free astaxanthin efficiently[6]. This result suggests that S. maltophilia OUC_Est10 is a good microbial resource for novel lipolytic enzymes. However, there are only few genome sequences available for S. maltophilia[7-8]. They are all focused on the drug resistance of S. maltophilia, and to the best of our knowledge, there has been no study on the diversity of lipolytic enzymes. Since lipolytic enzymes have wide application in industry, it is necessary to investigate the diversity of relevant genes in the genome of S. maltophilia in order to discover more encoding genes for the biocatalysts.
In this study, the lipolytic enzymes of S. maltophilia OUC_Est10 (China General Microbiological Culture Collection Center (CGMCC), 10672) were induced in the fermentation medium (KH2PO4, 0.025%; MgSO4·7H2O, 0.025%; FeSO4·7H2O, 0.001%; beef extract, 0.1%; peptone, 1.0%; cholesterol oleate, 0.1%; Tween-80, 1.0%; H2O, 100 mL; pH 7.0). Esterase activity and lipase activity were determined spectrophotometrically at 405 nm. Fermentation liquid of OUC_Est10 was centrifuged at 5439×g for 10 min, and the supernatant was subjected to ammonium sulfate precipitation. The resulting crude enzyme was put onto a DEAE-Sepharose Fast Flow column, which was previously equilibrated with buffer A (20 mmol/L Tris-HCl, pH 8.0). The unbound proteins were washed with buffer A until the absorbance at 280 nm reached the baseline. Furthermore, the bound proteins were eluted by a gradient of 0.1–0.7 mol/L NaCl in buffer A (Figure 1). The fractions resulted in a peak were analyzed in terms of esterase activity (p-nitrophenyl butyrate (pNPB) as substrate) and lipase activity (p-nitrophenyl palmitate (pNPP) as substrate).
Figure 1 Ion exchange chromatography map. The elution buffer was 20 mmol/L Tris-HCl buffer (pH 7.0) with NaCl concentration: peak 1, 0 mol/L; peak 2, 0.1 mol/L; peak 3, 0.2 mol/L; peak 4, 0.3 mol/L; peak 5, 0.4 mol/L; peak 6, 0.5 mol/L; peak 7, 0.6 mol/L; peak 8, 0.7 mol/L.
图选项





The result showed that esterase activities and lipase activities were both determined in 8 peaks (Table 1), and it was finally proven that OUC_Est10 could secrete a wide range of lipolytic enzymes. S. maltophilia OUC_Est10 was isolated from the slaughterhouse soil in Qingdao, China. The slaughterhouse soil was rich in lipids, which might explain the wide range of lipolytic enzymes in OUC_Est10. The feature of multiple lipolytic enzymes in S. maltophilia OUC_Est10 contributes to the efficient hydrolysis of lipids in the slaughterhouse soil.
Table 1. Separation of lipolytic enzymes in the fermentation liquid of OUC_Est10
Peak c (NaCl)/(mol/L) Total protein/mg Total activity/U Specific activity/(U/mg)
pNPB pNPP pNPB pNPP
1 0 25.310 148.058 7.535 5.850 0.298
2 0.1 20.278 8.681 10.726 0.428 0.529
3 0.2 9.105 8.183 15.582 0.899 1.711
4 0.3 5.205 2.977 3.769 0.572 0.724
5 0.4 6.612 3.711 4.966 0.561 0.751
6 0.5 6.200 3.588 6.118 0.579 0.987
7 0.6 4.040 2.856 4.989 0.707 1.235
8 0.7 1.390 1.265 1.689 0.910 1.215


表选项






To investigate the diversity of lipolytic enzyme genes, the genomic DNA of OUC_Est10 was extracted using Puregene Yeast/Bact. Kit B (QIAGEN, Maryland, USA) and sent to Tianjin Biochip Corporation (Tianjin, China) to sequence. The whole genomic DNA was sequenced on the single-molecule real-time (SRMT) sequencing platform PacBio RS Ⅱ (Pacific Biosciences, USA). The genomic sequence was obtained after the reads were de novo assembled using the RS Hierarchical Genome Assembly Process (HGAP) assembly protocol version 3.0 in SMRT Analysis version 2.3.0 (Pacific Biosciences, USA). The protein coding sequences (CDSs) were predicted using Glimmer 3.0[9]. The procedures of tRNA and rRNA prediction were conducted using tRNAscan-SE[10] and RNAmmer[11], respectively. Functional annotation and metabolic pathway analysis were performed on the Integrated Microbial Genomes-Expert Review (IMG-ER) pipeline[12].
The features of the complete genome sequence of S. maltophilia OUC_Est10 are listed in Table 2. The complete genome sequence consists of a single chromosome of 4668743 bp with a GC content of 66.25% (Figure 2), 3315 genes were identified in OUC_Est10, and the average number of genes in sequenced S. maltophilia was classified to functional categories according to clusters of orthologous genes (COG) designation (Table 3). Through genome searching, it was found that S. maltophilia was rich in lipolytic enzyme genes, which was one of the factors contributing to the virulence in S. maltophilia[7]. After detailed analysis, 33 proteins with putative lipolytic enzyme activities are found in the genome sequence of OUC_Est10 (Table 4), and the locations of these genes were also marked in Figure 2. This indicates that OUC_Est10 may be a good candidate used for hydrolyzing lipids.
Table 2. Genome features of Stenotrophomonas maltophilia OUC_Est10
Feature Value
Genome size/bp 4668743
G+C content/% 66.25
Protein coding genes (CDS) 4189
rRNA (5S, 16S, 23S) 13
tRNA 73
Miscellaneous RNA 38


表选项






Figure 2 Circular diagram of the main features of OUC_Est10.
图选项





Table 3. Number of genes of functional categories
Functional category Average of S. maltophilia OUC_Est10
General function prediction only 265.2±25.7 276
Transcription 241.2±27.9 261
Cell wall/membrane/envelope biogenesis 211.4±20.9 224
Signal transduction mechanisms 203.9±21.9 220
Amino acid transport and metabolism 207.6±18.3 218
Translation, ribosomal structure and biogenesis 207.3±15.3 218
Function unknown 198.6±20.9 214
Inorganic ion transport and metabolism 185.4±22.8 201
Energy production and conversion 184.9±15.6 190
Posttranslational modification, protein turnover, chaperones 147.1±12.7 155
Coenzyme transport and metabolism 146.4±14.7 152
Carbohydrate transport and metabolism 144.4±14.2 148
Lipid transport and metabolism 136.5±12.4 144
Cell motility 110.1±9.6 116
Defense mechanisms 97.0±11.2 111
Replication, recombination and repair 107.2±14.9 105
Secondary metabolites biosynthesis, transport and catabolism 80.3±7.7 82
Intracellular trafficking, secretion, and vesicular transport 77.5±10.2 73
Nucleotide transport and metabolism 67.8±5.1 71
Mobilome: prophages, transposons 30.2±16.7 51
Extracellular structures 47.2±6.6 48
Cell cycle control, cell division, chromosome partitioning 32.9±4.2 34
RNA processing and modification 1.0±0.4 1
Chromatin structure and dynamics 1.0±0.2 1
Cytoskeleton 1.0±0.2 1
Total genes 3133.0±283.4 3315


表选项






Table 4. Genes with predicted lipolytic enzyme activities
No. Length/bp Function
LEn1 435 Esterase YdiI
LEn2 891 Pimeloyl-ACP ME carboxylesterase
LEn3 813 Pimeloyl-ACP ME carboxylesterase
LEn4 1260 Putative esterase
LEn5 927 Pimeloyl-ACP ME carboxylesterase
LEn6 645 Lipase_GDSL_2
LEn7 702 Lipase_GDSL_2
LEn8 942 Pimeloyl-ACP ME carboxylesterase
LEn9 795 Pimeloyl-ACP ME carboxylesterase
LEn10 837 carboxylesterase
LEn11 696 Pimeloyl-ACP ME carboxylesterase
LEn12 1308 Lipase_GDSL_2
LEn13 1029 Esterase
LEn14 954 Pimeloyl-ACP ME carboxylesterase
LEn15 1038 Fermentation-respiration switch protein FrsA
LEn16 1005 Esterase, PHB depolymerase family
LEn17 879 Pimeloyl-ACP ME carboxylesterase
LEn18 1188 Lipase_GDSL_2
LEn19 960 Pimeloyl-ACP ME carboxylesterase
LEn20 825 Pimeloyl-ACP ME carboxylesterase
LEn21 1911 Predicted acyl esterase
LEn22 1329 Lipase (class 3)
LEn23 789 Lipase_GDSL_2
LEn24 939 Esterase
LEn25 843 Esterase
LEn26 1203 Secretory lipase
LEn27 1854 Outer membrane lipase/esterase
LEn28 618 Lipase_GDSL_2
LEn29 831 Esterase
LEn30 660 carboxylesterase
LEn31 780 Pimeloyl-ACP ME esterase
LEn32 702 Pimeloyl-ACP ME carboxylesterase
LEn33 855 Pimeloyl-ACP ME carboxylesterase
ACP represents acyl-carrier protein; ME represents methyl ester.


表选项






To prove the diversity and the potential use of lipolytic enzymes in S. maltophilia OUC_Est10, 16 pairs of primers were designed. The result of nucleic acid electrophoresis is shown in Supplementary material Figure S1. After being ligated to the pET-28a (+) vector, LEn4, LEn6, LEn12, LEn27 and LEn30 were successfully expressed in BL21 (DE3). Substrate specificity determination was carried out using p-nitrophenyl (pNP) esters with different acyl chain length. The results showed that they had different preferences for the length of fatty acid. LEn4, LEn12 and LEn27 had a preference for short-chain fatty acids, while LEn6 and LEn30 had a preference for medium-chain fatty acids (data not shown). It was worth noting that LEn27 was able to hydrolyze pNP esters with acyl chain length from 4 to 16, which indicated that LEn27 could be widely used for hydrolysis or synthesis of esters with different acyl chain lengths.
The organic solvents tolerance experiment showed that LEn4, LEn6, LEn12 and LEn27 had good organic solvent resistant properties, while LEn30 was highly denatured by organic solvents. LEn4, LEn6, LEn12 and LEn27 could all be used to synthesize ethyl esters (such as cinnamyl acetate) in a non-aqueous system (Figure 3). The determination of cinnamyl acetate was carried out using an HP-5 capillary column (30 m×0.25 mm×0.25 mm).
Figure 3 GC analysis of cinnamyl alcohol and cinnamyl acetate. Peak 1, the substrate (cinnamyl alcohol); Peak 2, the product (cinnamyl acetate).
图选项





These experiments indicated that lipolytic enzymes in OUC_Est10 had varied catalytic properties, which could broaden the application range of OUC_Est10. Our further studies will focus on expressing these putative lipolytic enzymes, and they will be used in many fields according to their catalytic properties.
Nucleotide sequence accession number The complete genome sequence of S. maltophilia OUC_Est10 is available at the IMG database under the accession number Ga0114270 and the GenBank database under the accession number CP015612.

References
[1] Arpigny JL, Jaeger KE. Bacterial lipolytic enzymes:classification and properties. Biochemical Journal, 1999, 343(1): 177-183. DOI:10.1042/bj3430177
[2] Bornscheuer UT. Microbial carboxyl esterases:classification, properties and application in biocatalysis. FEMS Microbiology Reviews, 2002, 26(1): 73-81. DOI:10.1111/j.1574-6976.2002.tb00599.x
[3] Gupta R, Gupta N, Rathi P. Bacterial lipases:an overview of production, purification and biochemical properties. Applied Microbiology and Biotechnology, 2004, 64(6): 763-781. DOI:10.1007/s00253-004-1568-8
[4] Khudary RA, Venkatachalam R, Katzer M, Elleuche S, Antranikian G. A cold-adapted esterase of a novel marine isolate, Pseudoalteromonas arctica:gene cloning, enzyme purification and characterization. Extremophiles, 2010, 14(3): 273-285. DOI:10.1007/s00792-010-0306-7
[5] López-López O, Fuci?os P, Pastrana L, Rúa ML, Cerdán ME, González-Siso MI. Heterologous expression of an esterase from Thermus thermophilus HB27 in Saccharomyces cerevisiae. Journal of Biotechnology, 2010, 145(3): 226-232. DOI:10.1016/j.jbiotec.2009.11.017
[6] Dong H, Li XM, Xue CH, Mao XZ. Astaxanthin preparation by fermentation of esters from Haematococcus pluvialis algal extracts with Stenotrophomonas species. Biotechnology Progress, 2016, 32(3): 649-656. DOI:10.1002/btpr.2258
[7] Crossman LC, Gould VC, Dow JM, Vernikos GS, Okazaki A, Sebaihia M, Saunders D, Arrowsmith C, Carver T, Peters N, Adlem E, Kerhornou A, Lord A, Murphy L, Seeger K, Squares R, Rutter S, Quail MA, Rajandream MA, Harris D, Churcher C, Bentley SD, Parkhill J, Thomson NR, Avison MB. The complete genome, comparative and functional analysis of Stenotrophomonas maltophilia reveals an organism heavily shielded by drug resistance determinants. Genome Biology, 2008, 9(4): R74. DOI:10.1186/gb-2008-9-4-r74
[8] Lira F, Hernández A, Belda E, Sánchez MB, Moya A, Silva FJ, Martínez JL. Whole-genome sequence of Stenotrophomonas maltophilia D457, a clinical isolate and a model strain. Journal of Bacteriology, 2012, 194(13): 3563-3564. DOI:10.1128/JB.00602-12
[9] Delcher AL, Harmon D, Kasif S, White O, Salzberg SL. Improved microbial gene identification with GLIMMER. Nucleic Acids Research, 1999, 27(23): 4636-4641. DOI:10.1093/nar/27.23.4636
[10] Lowe TM, Eddy SR. tRNAscan-SE:a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Research, 1997, 25(5): 955-964. DOI:10.1093/nar/25.5.0955
[11] Lagesen K, Hallin P, R?dland EA, Staerfeldt HH, Rognes T, Ussery DW. RNAmmer:consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Research, 2007, 35(9): 3100-3108. DOI:10.1093/nar/gkm160
[12] Markowitz VM, Mavromatis K, Ivanova NN, Chen IMA, Chu K, Kyrpides NC. IMG ER:a system for microbial genome annotation expert review and curation. Bioinformatics, 2009, 25(17): 2271-2278. DOI:10.1093/bioinformatics/btp393

相关话题/工程 技术 生物 序列 资源

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • Red/ET同源重组技术及其在微生物基因组挖掘中的应用进展
    Red/ET同源重组技术及其在微生物基因组挖掘中的应用进展郑文韬,张友明,卞小莹山东大学亥姆霍兹生物技术研究所,微生物技术国家重点实验室,山东大学生命科学学院,山东青岛266237收稿日期:2017-07-04;修回日期:2017-08-12;网络出版日期:2017-08-22基金项目:国家自然科学 ...
    本站小编 Free考研考试 2021-12-26
  • 隐性次级代谢产物生物合成基因簇的激活及天然产物定向发现
    隐性次级代谢产物生物合成基因簇的激活及天然产物定向发现侯路宽1,李花月1,2,李文利1,21.教育部海洋药物重点实验室,中国海洋大学医药学院,山东青岛266003;2.青岛海洋科学与技术国家实验室,海洋生物学与生物技术功能实验室,山东青岛266237收稿日期:2017-05-19;修回日期:2017 ...
    本站小编 Free考研考试 2021-12-26
  • 基于iTRAQ技术对植物乳杆菌FS5-5的耐盐特性分析
    基于iTRAQ技术对植物乳杆菌FS5-5的耐盐特性分析王茜茜,宋雪飞,郭晶晶,张颖,乌日娜沈阳农业大学食品学院,辽宁沈阳110866收稿日期:2016-12-28;修回日期:2017-03-12;网络出版日期:2017-03-30基金项目:国家自然科学基金(31471713,31000805);中国 ...
    本站小编 Free考研考试 2021-12-26
  • 原核生物全基因组中16S rRNA基因的识别
    原核生物全基因组中16SrRNA基因的识别闫文凯#,许明敏#,张广乐,乔宁,徐炜娜,陈园园,张良云南京农业大学理学院,江苏南京210095收稿日期:2016-10-14;修回日期:2016-11-24;网络出版日期:2017-02-20基金项目:国家自然科学基金(11571173);江苏省自然科学基 ...
    本站小编 Free考研考试 2021-12-26
  • 为中国医学事业奉献一生的微生物学家——朱既明
    为中国医学事业奉献一生的微生物学家——朱既明青宁生*本文为纪念朱老百年诞辰而作。写作过程中得到传主儿媳钱渊教授和中国疾病预防控制中心病毒病预防控制所的阮力、武桂珍两位研究员的大力支持,并承上述诸位审阅文稿提出修改意见,谨致谢忱。朱既明,英文名Chi-MingChu,1917年9月12日生于江苏省宜兴 ...
    本站小编 Free考研考试 2021-12-26
  • 气态烃诱导下油气微生物数量及功能基因变化特征
    气态烃诱导下油气微生物数量及功能基因变化特征顾磊1,2,梅泽3,许科伟2,汤玉平2,杨帆2,孙永革11.浙江大学地球科学系,浙江杭州310027;2.中国石油化工股份有限公司石油勘探开发研究院无锡石油地质研究所,江苏无锡214151;3.江南大学环境与土木工程学院,江苏无锡214121收稿日期:20 ...
    本站小编 Free考研考试 2021-12-26
  • 胶孢炭疽菌CgRGS2基因的克隆及生物学功能
    胶孢炭疽菌CgRGS2基因的克隆及生物学功能吴曼莉,李晓宇,张楠,徐爽,柳志强海南大学环境与植物保护学院,海南海口570228收稿日期:2016-05-04;修回日期:2016-08-25;网络出版日期:2016-09-05基金项目:国家自然科学基金(31560045);海南省自然科学基金(2015 ...
    本站小编 Free考研考试 2021-12-26
  • 华癸根瘤菌7653R hfq基因突变株的构建及其生物学特性
    华癸根瘤菌7653Rhfq基因突变株的构建及其生物学特性马春草,周雪娟,谢福莉,李友国农业微生物学国家重点实验室,华中农业大学,湖北武汉430070收稿日期:2016-05-06;修回日期:2016-06-08;网络出版日期:2016-07-01基金项目:国家自然科学基金(31371549,3146 ...
    本站小编 Free考研考试 2021-12-26
  • 聚苹果酸生产菌出芽短梗霉CCTCC M2012223的全基因组测序及序列分析
    聚苹果酸生产菌出芽短梗霉CCTCCM2012223的全基因组测序及序列分析王永康1,宋晓丹1,李晓荣1,杨尚天2,邹祥11.西南大学药学院,重庆药物过程与质量控制工程技术中心,重庆400715;2.WilliamG.LowrieDepartmentofChemicalandBiomolecularE ...
    本站小编 Free考研考试 2021-12-26
  • 金霉素生物合成基因簇中调控基因ctcB的功能
    金霉素生物合成基因簇中调控基因ctcB的功能刘佳1,朱涛1,王鹏飞2,孔令新1,王松梅1,刘运添2,谢昌贤2,邓子新1,由德林1,21.上海交通大学生命科学技术学院,微生物代谢国家重点实验室,上海200240;2.金河生物科技股份有限公司,内蒙古呼和浩特010200收稿日期:2015-12-14;修 ...
    本站小编 Free考研考试 2021-12-26