删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

吸水链霉菌井冈变种的色素合成基因缺失对井冈霉素产量的影响

本站小编 Free考研考试/2021-12-26

吸水链霉菌井冈变种的色素合成基因缺失对井冈霉素产量的影响
彭瑶, 芦晨阳, 白林泉
上海交通大学, 微生物代谢国家重点实验室, 上海 200240

收稿日期:2016-01-26;修回日期:2016-02-26;网络出版日期:2016-03-14
基金项目:国家自然科学基金(31070070)

*通信作者:白林泉, Tel/Fax:+86-21-34206722;E-mail:bailq@sjtu.edu.cn


摘要[目的]通过缺失井冈霉素高产菌株TL01中4个典型的色素合成基因簇来考察其对井冈霉素产量、菌体生长和发酵液颜色的影响。[方法]通过同源重组双交换对4个色素合成基因簇进行逐个同框缺失,HPLC检测突变株井冈霉素产量的变化,qRT-PCR检测突变株中井冈霉素合成基因转录变化,通过称量菌丝体干重来绘制其生长曲线。[结果]和出发菌株TL01相比,多巴类黑色素基因簇缺失株PY06中井冈霉素的发酵产量由原来的20.6 g/L上升至23.1 g/L,提高了12%;Ⅲ型聚酮合酶编码的黑色素基因簇缺失株PY07产量无明显变化;Ⅱ型聚酮合酶编码的孢子色素基因簇缺失和褐黄素基因簇缺失分别导致井冈霉素产量下降11.7%和17.2%。所有缺失突变株中井冈霉素基因簇转录水平和发酵液颜色均没有明显变化。[结论]不同色素基因的缺失对井冈霉素产量和菌株生物量积累具有不同的影响。多巴类黑色素与井冈霉素的生物合成过程竞争共同前体,将其中断后使前体流向井冈霉素生物合成,达到了进一步提高产量的目的。
关键词: 井冈霉素 产量 黑色素 酪氨酸 前体供应
Effects of pigment gene deletions on validamycin A production in Streptomyces hygroscopicus var. jinggangensis
Peng Yao, Lu Chenyang, Bai Linquan
State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China

Received 26 January 2016; Revised 26 February 2016; Published online 14 March 2016
*Corresponding author: Linquan Bai Tel/Fax: +86-21-34206722; E-mail: bailq@sjtu.edu.cn
Supported by the National Natural Science Foundation of China (31070070)

Abstract: [Objective]We studied the contributions of four pigment biosynthetic genes to validamycin A yield, biomass accumulation, and the color of fermentation broth via individual gene deletions.[Methods]The deletion mutants were obtained via homologous recombination. The titer of validamycin A was detected by HPLC. The transcription of validamycin biosynthetic genes was quantified by qRT-PCR, and the growth was measured with dry cell weight.[Results]Compared with the parent strain, the deletion of DOPA melanin genes increased the validamycin A titer from 20.6 to 23.1 g/L (by 12%), whereas the deletion of type Ⅲ polyketide synthase melanin genes showed no effect. The inactivation of type Ⅱ polyketide synthase spore pigment genes and ochronotic pigment genes decreased validamycin A production by 11.7% and 17.2%, respectively. All these mutant strains had no significant change in transcriptional level and the color of supernatant.[Conclusion]Pigment biosynthetic gene deletions showed different effects on validamycin yield and biomass accumulation, and the deletion of DOPA melanin biosynthetic genes redirected the precursor flux and successfully increased the yield of validamycin A.
Key words: validamycin A production melanin tyrosine precursor supply
微生物在生长过程中可以产生各种由色素基因编码的天然色素,它们种类繁多、颜色多样,具有一定的生物学功能和应用价值[1]。根据结构特征,常见的微生物色素可分为5大类:以类胡萝卜素、环烯醚单萜为代表的异戊二烯衍生物[2],以红曲色素为代表的聚酮类衍生物[3],以黑色素为代表的多酚类衍生物[4],以苯醌、萘醌、蒽醌为代表的醌类衍生物[5],以及其他色素[6-7]。微生物色素属于次级代谢产物,是菌体生长和繁殖过程中产生的非必需代谢产物,菌体失去合成某种色素的能力后仍可以正常生长[8]
微生物色素不仅作为着色剂被广泛运用于食品、化妆品和药品行业[9],而且具有重要的生物活性,如抗肿瘤[10-12]、抗氧化[13-14]、抗菌[15-17]、抗炎及免疫调节活性[18]等等。此外,微生物来源的色素作为工业着色剂在纺织、涂料等领域也有广泛应用,它们不仅能提供明亮的颜色,而且具有显著的抗菌活性[19]
农用抗生素井冈霉素属于C7N氨基环醇类化合物,可高效防治水稻纹枯病。同时,井冈霉素生物合成的中间产物可用于生产治疗Ⅱ型糖尿病的药物[20],具有很高的经济附加价值。2005年,本实验室成功克隆了井冈霉素生物合成基因簇,通过重新组装valABCKLMNG 8个必需结构基因,实现了井冈霉素在变铅青链霉菌中的异源合成[21]。通过同位素标记、体内缺失和体外酶促等实验,证明其合成前体是来源于磷酸戊糖途径的7-磷酸景天庚酮糖、UDP-葡萄糖和谷氨酸[22]。2012年,吸水链霉菌井冈变种5008的全基因组被测定,通过多组学手段对井冈霉素高产机理进行了初步阐述。高产菌株TL01发酵过程中会产生大量未知化学结构的色素,48 h发酵液呈现深褐色,这加大了下游分离纯化的难度,并影响产品的色泽、产率和质量[23]
本研究中,我们通过生物信息学的分析,在基因组中寻找到4组可能参与色素合成的基因,分别参与以酪氨酸为前体的黑色素[24]、Ⅲ型聚酮合酶(polyketide synthase, 以下简称为PKS)编码的黑色素[25]、Ⅱ型PKS编码的孢子色素[26]和来源于尿黑酸的褐黄素[24]的合成,依次命名为Cluster Ⅰ、Cluster Ⅱ、Cluster Ⅲ和Cluster Ⅳ。通过对上述基因簇进行逐一缺失,考察了缺失突变株的井冈霉素产量、生物量积累和发酵液颜色的变化,得到了产量进一步提高的突变株,并对其产量提高机理进行了初步分析。
1 材料和方法 1.1 材料
1.1.1 菌种、质粒及引物 本研究所用的菌种、质粒及引物见表 1。 表 1. 实验中所用的菌种、质粒及引物 Table 1. Strains, plasmids and primers used in this study
Strains, plasmids and
primers
Related characters and sequencesSources
Strains
S. hygroscopicus var. jinggangensis
TL01High-yielding validamycin producing strainZhejiang
Tonglu
Huifeng
Biosciences
Co., Ltd.
PY06Mutant of TL01 with the deletion of DOPA melanin gene Cluster Ⅰ (SHJG4188-4188)This work
PY07Mutant of TL01 with the deletion of type Ⅲ PKS melanin gene Cluster Ⅱ (SHJG2643-2648)This work
PY08Mutant of TL01 with the deletion of type Ⅱ PKS spore pigment gene Cluster Ⅲ (SHJG3678-3685)This work
PY08Mutant of TL01 with the deletion of ochronotic pigment gene Cluster Ⅳ (SHJG4405-4406)This work
E. coli
DH8BF′(traΔ36 lacIq proAB lacZΔM15) rpsL(strR) thr leu endA thi-1 lacY galK galT ara tonA tsx dcm dam supE44Δ(lac-proAB)Δ(mcrC-mrr)82::Tn8(tetR)GIBCO BRL
ET8567(pUZ8002)recE dcm-dam-hsdS CmrTetrStrrKmr[27]
Plasmids
pBluescript Ⅱ SK(+)Bla lacZorif1Stratagene
pJTU1278Bla tsr lacZ oriT oripIJ101 oriColE1[28]
pLQ655pJTU1278 with the left 1.83 kb SpeⅠ /EcoR Ⅰ flanking sequence and the right 1.80 kb
EcoR Ⅰ/Hind Ⅲ flanking sequence of SHJG4198-4199 for the deletion of Cluster Ⅰ
This work
pLQ656pJTU1278 with the left 1.64 kb SpeⅠ /EcoR Ⅰ flanking sequence and the right 1.58 kb
EcoR Ⅰ /Hind Ⅲ flanking sequence of SHJG4405-4406 for the deletion of Cluster Ⅳ
This work
pLQ664pJTU1278 with the left 1.60 kb SpeⅠ /EcoR Ⅰ flanking sequence and the right 1.78 kb
EcoR Ⅰ/Hind Ⅲ flanking sequence of SHJG2643-2649 for the deletion of Cluster Ⅱ
This work
pLQ665pJTU1278 with the left 1.50 kb SpeⅠ /EcoR Ⅰ flanking sequence and the right 1.60 kb
EcoR Ⅰ /Hind Ⅲ flanking sequence of SHJG3678-3685for the deletion of Cluster Ⅲ
This work
PrimersSequence (5′→3′)
4188-L-L-SpeⅠATATAACTAGTCTACCTCGTCAACACCTC
4188-L-R-EcoRⅠATATAGAATTCTCCTGGAAGAACCACAAC
4188-R-L-EcoRⅠATATAGAATTCGGATCAGATTCCGTACCG
4188-R-R-HindⅢATATAAAGCTTTGAGTTGCCGAAGAAAGG
4188-C-FGGCTCACGTCCTCCAACT
4188-C-RCGGTGACCAGTGGGCTAC
2463-L-F-SpeⅠATATAACTAGTGATCGCTCGACCGCTTCC
2463-L-Rin-EcoRⅠATATAGAATTCGATGGGCATGGCTGACCTC
2463-L-Rout-EcoRⅠATATAGAATTCCTGGGAGCGGGCTTGTCT
2463-R-F-EcoRⅠATATAGAATTCGATCGTCGGGATGATGCA
2463-R-R-HindⅢATATAAAGCTTCCAGCAACAGCCTGAGAT
2463-C-FCAACGGCAAGATCGTCAC
2463-C-RGCTTCTTTGCCAGATGCT
2643-WT-FACCTTCACGATGGAGTGG
2643-WT-RGAAGTTCCAGGGCATCAC
3678-L-F-SpeⅠATATAACTAGTGCATCGTCCTGTTCAAGA
3678-L-R-EcoRⅠATATAGAATTCCGAGTTCAAGGAGGTCAG
3678-R-F-EcoRⅠATATAGAATTCCGCTAGGTCAGATCCGTA
3678-R-R-HindⅢATATAAAGCTTATGCCGCCGATGTAGTAG
3678-C-FGTGGTGGTGATCGAGAAC
3678-C-RCTGTTCGTGCTGATGGTT
3678-WT-FATCAAGAACATCCTGGAGTG
3678-WT-RACCGACAACATCAACAAGA
4405-L-F-SpeⅠATATAACTAGTATCACAGCGTGTCACTCA
4405-L-R-EcoRⅠATATAGAATTCGGCAAGGGCAACTTCAAG
4405-R-F-EcoRⅠATATAGAATTCATCATCCCGCTGGTGGAAC
4405-R-R-HindⅢATATAAAGCTTAGACCTCTCAGACGCTCGA
4405-C-FCAGTACACGCGGATGAAG
4405-C-RCACAACGAGGCACAGATG
4405-WT-FGCATCAACCCGTACTTCT
4405-WT-RGCCATCGCCAAGAAGAAG


表选项







1.1.2 培养基 大肠杆菌培养采用LB (Luria-Bertani)和LA培养基。链霉菌培养采用TSBY液体培养基(g/L):胰胨豆汤粉30,蔗糖103,酵母提取物10,蒸馏水1 L。黄豆饼粉浸汁琼脂(SFM) (g/L):黄豆饼粉20,甘露醇20,琼脂20,蒸馏水1 L。YMG培养基(g/L):酵母提取物4,麦芽提取物10,葡萄糖4,蒸馏水1 L。井冈霉素发酵培养基(g/L):大米粉95,花生粉18,K2HPO4 0.7,NaCl 1.4,CaCO3 0.6,蒸馏水1 L。
1.1.3 主要试剂 实验中所用抗生素购自Sigma公司;连接酶和KOD高保真DNA聚合酶购自TOYOBO公司;PCR产物回收试剂盒购自Omega公司;限制性内切酶购自Fermentas公司;RNA快速提取试剂盒购自赛百盛公司。 1.2 Cluster Ⅰ缺失菌株PY06的构建 以TL01基因组DNA为模板,用引物4198-L-L-SpeⅠ和4198-L-R-EcoRⅠ、4199-R-L-EcoRⅠ和4199-R-R-HindⅢ扩增得到1.83 kb左侧和1.80 kb右侧片段。左侧片段经Spe Ⅰ/EcoR Ⅰ酶切,右侧片段经EcoR Ⅰ/Hind Ⅲ酶切后,与Spe Ⅰ/Hind Ⅲ酶切处理后的载体pJTU1278连接,得到用于双交换的质粒pLQ655。将pLQ655转入大肠杆菌ET12567 (pUZ8002)中,通过大肠杆菌-链霉菌间的接合转移导入井冈霉素高产菌株TL01中。16 h后用含硫链丝菌素和甲氧苄啶2种抗生素的无菌水覆盖,待SFM平板吹干后,倒置培养3-4 d可以观察到接合子。将接合转移子划线接种至含上述2种抗生素的SFM平板上30 °C培养。用验证引物4198-C-F和4198-C-R验证接合转移子是单交换菌株后,将正确的单交换菌株进行松弛培养,收集孢子进行梯度稀释,得到单菌落。随后用PCR扩增方法筛选得到双交换突变株,即Cluster Ⅰ缺失突变株,命名为PY06。
1.3 Cluster Ⅱ缺失菌株PY07的构建 方法与1.2类似,将构建好的pLQ664通过接合转移导入井冈霉素高产菌株TL01中,得到Cluster Ⅱ缺失突变株PY07。
1.4 Cluster Ⅲ缺失菌株PY08的构建 方法与1.2类似,将构建好的pLQ665通过接合转移导入井冈霉素高产菌株TL01中,得到Cluster Ⅲ缺失突变株PY08。
1.5 Cluster Ⅳ缺失菌株PY09的构建 方法与1.2类似,将构建好的pLQ656通过接合转移导入井冈霉素高产菌株TL01中,得到Cluster Ⅳ缺失突变株PY09。
1.6 井冈霉素发酵及含量检测 将得到的4株缺失株与出发菌株TL01在种子培养基TSBY中30 °C振荡(220 r/min)培养36-48 h后,按体积比1:10接入发酵培养基,37 °C振荡(220 r/min)发酵4 d。每隔24 h准确量取1 mL的发酵液,采用高效液相色谱(HPLC)法测定,操作如下:将发酵液12000 r/min离心15 min取上清,用0.2 μm一次性水相过滤器过滤,过滤后的样品稀释10倍,用HPLC检测井冈霉素产量。所用仪器为安捷伦1200 series高效液相色谱仪,色谱柱为Agilent公司的ZORBAX SB-C18柱(3.5 μm,2.1 mm×150 mm),流动相为98%的0.5 mmol/L磷酸盐缓冲液和2%甲醇,流速为0.1 mL/min,柱温为室温,检测波长为210 nm。每针进样量为5 μL,检测时间为15 min。根据标准曲线,计算出井冈霉素产量。
1.7 菌体干重测定 菌体干重测定采用YMG培养基,37 °C振荡(220 r/min)发酵4 d,每隔24 h准确量取1 mL的菌液放于已称重的离心管中,8000 r/min离心弃上清,用无菌水清洗1-2遍,以除去残留的培养基。将离心管放在70 °C烘箱中,烘至恒重后称量,计算菌体干重。
1.8 发酵液颜色检测 发酵培养基发酵4 d后,取1 mL的发酵液12000 r/min离心15 min后取等量上清,置于1.5 mL Eppendorf管中,在白色背景下裸眼观察发酵液颜色。
2 结果和分析 2.1 4组色素编码基因簇转录水平检测 通过全基因组序列分析,我们发现了4组可能参与色素合成的基因,其中基因SHJG4198-4199 (Cluster Ⅰ)参与以酪氨酸为前体的黑色素合成,基因SHJG2643-2649 (Cluster Ⅱ)参与Ⅲ型PKS编码的黑色素合成,基因SHJG3678-3685 (Cluster Ⅲ)参与Ⅱ型PKS编码的孢子色素合成,基因SHJG4405-4406 (Cluster Ⅳ)参与来源于尿黑酸的褐黄素的合成。通过转录组芯片数据,我们发现Cluster Ⅰ的转录量为6.5-7.1,Cluster Ⅱ的转录量为6.6-8.4,Cluster Ⅲ的转录量为5.7-9.7,Cluster Ⅳ的转录量为7.0-13.4,内参hrdB基因的转录量为9.3,说明上述4个色素基因簇在高产培养基发酵条件下均具有较高的转录水平。
2.2 Cluster Ⅰ的缺失
2.2.1 Cluster Ⅰ缺失提高井冈霉素产量 为了探究以酪氨酸为前体的黑色素与井冈霉素生物合成的关系,我们缺失了SHJG4198-4199中1079 bp的序列,得到双交换菌株PY06 (图 1-A)。利用验证引物4198-C-F和4198-C-R对双交换菌株的基因型进行PCR扩增验证。以高产菌株TL01的总DNA为模板,扩增条带为1.70 kb;以缺失株PY06的总DNA为模板,扩增条带为0.60 kb (图 1-C)。将出发菌株TL01和PY06的3个平行株在相同条件下进行发酵,每组3个重复。和出发菌株相比,PY06中井冈霉素合成速率加快,发酵48 h井冈霉素的产量开始明显高于出发菌株,72 h井冈霉素产量已接近出发菌株96 h的终产量,96 h发酵终产量由20.6 g/L提高到23.1 g/L,相对于出发菌株TL01增加了12% (图 1-B)。
图 1. Cluster Ⅰ缺失对井冈霉素发酵的影响 Figure 1. Effects of Cluster Ⅰ deletion on validamycin A production. A: schematic representation of the deletion of SHJG4198-4199; B: validamycin A production of TL01 and PY06; C: confirmation of PY06 by PCR amplification; D: dry cell weight of TL01 and PY06. M: 1 kb ladder DNA marker; 1-3: PCR product with the genomic DNA of mutant PY06 as template; 4: PCR product with the genomic DNA of TL01 as template; 5: PCR product with pLQ655 as template. *: P < 0.05.
图选项






2.2.2 Cluster Ⅰ缺失能促进菌体生长 我们同时测定了TL01和PY06的生长曲线并进行比较。结果表明,缺失黑色素基因后,缺失株PY06的生物量在发酵前24 h较出发菌株TL01上升了近10%,并在随后的发酵过程中逐渐趋近于出发菌株的生物量,96 h最终生物量与出发菌株趋同(图 1-D)。同时两者的井冈霉素生物合成基因簇的转录水平没有明显的变化(图 2)。
图 2. TL01和4种色素基因缺失株井冈霉素基因簇的转录水平 Figure 2. Transcription of validamycin biosynthetic gene cluster in TL01 and its gene deletion mutants.
图选项





2.3 Cluster Ⅱ的缺失
2.3.1 Cluster Ⅱ的缺失不影响井冈霉素产量 为了探究Ⅲ型PKS编码的黑色素与井冈霉素合成的关系,我们缺失了SHJG2643-2649中6711 bp的序列,得到双交换菌株PY07 (图 3-A)。利用验证引物2463-C-F和2463-C-R对双交换菌株的基因型进行PCR验证。以缺失株PY07的总DNA为模板,扩增条带为0.6 kb;以高产菌株TL01的总DNA为模板,由于缺失片段过大,无法得到扩增条带。为了进一步验证,又在缺失区域边缘设计引物2643-WT-F和2643-WT-R,此时以TL01总DNA为模板可以得到0.65 kb扩增条带,而以PY07总DNA为模板无法得到扩增条带(图 3-C)。与出发菌株TL01相比,缺失株PY07在发酵24 h井冈霉素产量略有增加,但随着发酵时间的延长,缺失株抗生素产量趋势与出发菌株类似,井冈霉素终产量并没有受到显著的影响(图 3-B)。
图 3. Cluster Ⅱ的缺失对井冈霉素发酵的影响 Figure 3. Effects of Cluster Ⅱ deletion on validamycin A production. A: schematic representation of the deletion of SHJG2643-2649; B: validamycin A production of TL01 and PY07; C: confirmation of PY07 by PCR amplification; D: dry cell weight of TL01 and PY07. M: 1 kb ladder DNA marker; 1-3: PCR product with the genomic DNA of mutant PY07 as template; 4: PCR product with the genomic DNA of TL01 as template; 5: PCR product with pLQ664 as template. *: P < 0.05.
图选项






2.3.2 Cluster Ⅱ的缺失提高菌体生长 我们测定了出发菌株TL01和缺失株PY07的生长曲线并进行比较,缺失株PY07的生物量在发酵前24 h内有大幅度的提升,相比于出发菌株TL01上升了近20%。缺失株的生物量在48 h达到峰值,较出发菌株增加了10%,之后随着发酵时间的延长趋近于出发菌株(图 3-D)。同时两者的井冈霉素生物合成基因簇的转录水平没有明显的变化(图 2)。 2.4 Cluster Ⅲ的缺失
2.4.1 Cluster Ⅲ的缺失降低井冈霉素产量 为了探究Ⅱ型PKS编码的孢子色素对井冈霉素是否有影响,我们缺失了SHJG3678-3685中6969 bp的序列,得到双交换菌株PY08 (图 4-A)。利用验证引物3678-C-F和3678-C-R对双交换菌株的基因型进行PCR验证。以缺失株PY08的总DNA为模板,扩增条带为0.6 kb;以高产菌株TL01的总DNA为模板,由于缺失片段过大,无法得到扩增条带。为了进一步验证,又在缺失区域边缘设计引物3678-WT-F和3678-WT-R,此时以TL01总DNA为模板可以得到0.8 kb扩增条带,而以PY08总DNA为模板无法得到扩增条带(图 4-C)。与出发菌株TL01相比,缺失株PY08中井冈霉素的发酵产量在前48 h基本相同,随后缺失株井冈霉素合成速率迅速减缓,发酵72 h产量明显下降,96 h终产量由20.6 g/L下降到18.2 g/L,下降了11.7% (图 4-B)。
图 4. Cluster Ⅲ的缺失对井冈霉素发酵的影响 Figure 4. Effects of Cluster Ⅲ deletion on validamycin A production. A: schematic representation of the deletion of SHJG3678-3685; B: validamycin A production of TL01 and PY08; C: confirmation of PY08 by PCR amplification; D: dry cell weight of TL01 and PY08. M: 1 kb ladder DNA marker; 1-3: PCR product with the genomic DNA of mutant PY08 as template; 4: PCR product with the genomic DNA of TL01 as template; 5: PCR product with pLQ665 as template. *: P < 0.05.
图选项






2.4.2 Cluster Ⅲ的缺失不影响菌体生长 我们测定了出发菌株TL01和缺失株PY08的生长曲线并进行比较,发现缺失株PY08的生长曲线与出发菌株TL01的生长曲线基本保持一致(图 4-D)。同时两者的井冈霉素生物合成基因簇的转录水平没有明显的差别(图 2)。 2.5 Cluster Ⅳ的缺失
2.5.1 Cluster Ⅳ的缺失降低井冈霉素产量 为了探究源于尿黑酸的褐黄素与井冈霉素合成的关系,我们缺失了SHJG4405-4406中1634 bp的序列,得到双交换菌株PY09 (图 5-A)。利用验证引物4405-C-F和4405-C-R对双交换菌株的基因型进行PCR验证。以缺失株PY09的总DNA为模板,扩增条带为1.0 kb;以高产菌株TL01的总DNA为模板,由于缺失片段过大,无法得到扩增条带。为了进一步验证,又在缺失区域边缘设计引物4405-WT-F和4405-WT-R,此时以TL01总DNA为模板可以得到0.5 kb扩增条带,而以PY09总DNA为模板无法得到扩增条带(图 5-C)。与出发菌株相比,前24 h井冈霉素的产量基本一致,48 h缺失株的发酵速率减慢,其产量呈现下降的趋势,72 h缺失株井冈霉素产量降低到与出发菌株48 h产量持平,96 h产量差异进一步扩大,终产量由20.6 g/L降低到17.05 g/L,下降了17.2% (图 5-B)。
图 5. Cluster Ⅳ的缺失对井冈霉素发酵的影响 Figure 5. Effects of Cluster Ⅳ deletion on validamycin A production. A: schematic representation of the deletion of SHJG4405-SHJG4406; B: validamycin A production of TL01 and PY09; C: confirmation of PY09 by PCR amplification; D: dry cell weight of TL01 and PY09. M: 1 kb ladder DNA marker; 1-3: PCR product with the genomic DNA of mutant PY09 as template; 4: PCR product with the genomic DNA of TL01 as template; 5: PCR product with pLQ656 as template. *: P < 0.05.
图选项






2.5.2 Cluster Ⅳ的缺失减弱菌体生长 我们测定了出发菌株TL01和缺失株PY09的生长曲线并进行比较,缺失褐黄素基因后,缺失株PY09的生物量在前期较出发菌株TL01有下降(图 5-D)。同时两者的井冈霉素生物合成基因簇的转录水平没有明显的变化(图 2)。 3 讨论 随着全基因组测序的发展,利用代谢工程手段定向改造工业高产菌株已成为提高抗生素产量的重要手段之一。通过生物信息学分析,在井冈霉素高产菌株TL01的基因组中发现了4组参与色素合成的基因簇,考虑到发酵过程中色素的分泌会增加后续纯化精制的难度,遂对上述4个色素基因分别进行了缺失。结果发现,缺失株井冈霉素的产量发生不同程度的变化,但发酵液颜色没有明显变化。
敲除Cluster Ⅰ后,缺失株产率明显加快,终产量从20.6 g/L提高到23.1 g/L,增加近12%;生物量在发酵前24 h较出发菌株TL01增加近10%。在微生物代谢中,酪氨酸合成途径来源于赤藓糖-4-磷酸和磷酸烯醇式丙酮酸,而赤藓糖-4-磷酸又是井冈霉素合成前体7-磷酸景天庚酮糖的转化产物。另外,酪氨酸代谢分为2条途径:(1)氨基部分经转氨作用生成谷氨酸,芳香环部分降解成乙酰辅酶A和延胡索酸进入TCA循环;(2)在酪氨酸酶催化下生成多巴进而形成黑色素[29]。实验中缺失Cluster Ⅰ后,菌体不再生成以酪氨酸为前体的黑色素,降低了酪氨酸的消耗与合成,从而促使更多的芳香环分解产物流向TCA循环,7-磷酸景天庚酮糖和谷氨酸流向井冈霉素生物合成途径,使得突变株PY06表现出产量和生物量均增加的表型。
除多巴类黑色素外,存在另一类Ⅲ型PKS编码的黑色素。实验中敲除Cluster Ⅱ后,菌体量大幅度提升,但井冈霉素终产量无明显变化。考虑到常见聚酮的前体是辅酶A,而辅酶A的大量积累会促进初级代谢,导致生物量增加[30]。同时辅酶A不是井冈霉素合成的直接前体,因此缺失后对井冈霉素的积累没有明显影响。但在缺失编码Ⅱ型聚酮孢子色素的基因簇(Cluster Ⅲ)后,突变株产量反而下降11.7%,其中的机理目前尚不清楚。除此之外,缺失褐黄素基因簇(Cluster Ⅳ)后发现生物量和产量均下降。这可能是缺失4-羟苯丙酮酸双加氧酶后,菌株不再合成尿黑酸,菌体不仅不能通过尿黑酸途径代谢酪氨酸用于生长,反而可能部分强化了以酪氨酸为前体的黑色素生成,导致井冈霉素合成能力下降。由于褐黄素途径和黑色素途径都来源于酪氨酸前体,下一步拟在缺失黑色素合成基因的菌株基础上缺失褐黄素合成基因,进一步提高井冈霉素的产量。
在对高产菌株TL01的4组色素合成基因进行单独缺失后,发现发酵液仍呈现深褐色,与出发菌株相比没有明显变化,推测在基因组中仍存在其他非典型的色素合成基因簇,负责深褐色色素的分泌,这需要后续对基因组进行精细分析寻找确认。

参考文献
[1] Zeilinger S, Martín JF, García-Estrada C.Biosynthesis and Molecular Genetics of Fungal Secondary Metabolites, Volume 2.New York:Springer-Verlag, 2015.
[2] Delgado-Vargas F, Jiménez AR, Paredes-López O. Natural pigments:carotenoids, anthocyanins, and betalains-characteristics, biosynthesis, processing, and stability.Critical Reviews in Food Science and Nutrition, 2000, 40(3): 173–289DOI:10.1080/10408690091189257.
[3] Martínková L, Jzlová P, Vesely D. Biological activity of polyketide pigments produced by the fungus Monascus.Journal of Applied Microbiology, 1995, 79(6): 609–616.
[4] Wei L, Fang JW, Zhou JC, Li YG. Identification of a marine bacterium strain and characterization of a novel functional gene cluster involved in melanin biosynthesis.Microbiology China, 2007, 34(6): 1118–1122(in Chinese).魏力, 方加玮, 周俊初, 李友国. 一株海洋细菌的初步鉴定及其产黑色素相关新基因(簇)的分离.微生物学通报, 2007, 34(6): 1118–1122.
[5] Dufossé L. Anthraquinones, the Dr Jekyll and Mr Hyde of the food pigment family.Food Research International, 2014, 65: 132–136DOI:10.1016/j.foodres.2014.09.012.
[6] Choi HS, Kim Jin JK, Cho EH, Kim YC, Kim JI, Kim SW. A novel flavin-containing monooxygenase from Methylophaga sp.strain SK1 and its indigo synthesis in Escherichia coli.Biochemical and Biophysical Research Communications, 2003, 306(4): 930–936DOI:10.1016/S0006-291X(03)01087-8.
[7] Dufossé L. Pigments, microbial//Schaechter M.Encyclopedia of Microbiology.3rd ed.Boston: Academic Press, 2009: 457-471.
[8] Niu GQ, Tan HR. Biosynthesis and regulation of secondary metabolites in microorganisms.Science China Life Sciences, 2013, 56(7): 581–583DOI:10.1007/s11427-013-4501-5.
[9] Yang SC, Li CY, Pan Y. Research progress of microorganisms pigments in the food industry.Food Research and Development, 2014, 35(1): 114–117(in Chinese).杨双春, 李春雨, 潘一. 食品工业中微生物色素的研究进展.食品研究与开发, 2014, 35(1): 114–117.
[10] Montaner B, Navarro S, Piqué M, Vilaseca M, Martinell M, Giralt E, Gil J, Pérez-Tomás R. Prodigiosin from the supernatant of Serratia marcescens induces apoptosis in haematopoietic cancer cell lines.British Journal of Pharmacology, 2000, 131(3): 585–593DOI:10.1038/sj.bjp.0703614.
[11] Pandey R, Chander R, Sainis KB. Prodigiosins:a novel family of immunosuppressants with anti-cancer activity.Indian Journal of Biochemistry&Biophysics, 2007, 44(5): 295–302.
[12] Zheng YQ, Xin YW, Shi XN, Guo YH. Anti-cancer effect of rubropunctatin against human gastric carcinoma cells BGC-823.Applied Microbiology and Biotechnology, 2010, 88(5): 1169–1177DOI:10.1007/s00253-010-2834-6.
[13] Lampila LE, Wallen SE, Bullerman LB. A review of factors affecting biosynthesis of carotenoids by the order Mucorales.Mycopathologia, 1985, 90(2): 65–80DOI:10.1007/BF00436853.
[14] Mascio PD, Kaiser S, Sies H. Lycopene as the most efficient biological carotenoid singlet oxygen quencher.Archives of Biochemistry and Biophysics, 1989, 274(2): 532–538DOI:10.1016/0003-9861(89)90467-0.
[15] Durán M, Ponezi AN, Faljoni-Alario A, Teixeira MFS, Justo GZ, Durán N. Potential applications of violacein:a microbial pigment.Medicinal Chemistry Research, 2012, 21(7): 1524–1532DOI:10.1007/s00044-011-9654-9.
[16] Ibrahim D, Nazari TF, Lim SH, Kassim J. Prodigiosin-an antibacterial red pigment produced by Serratia marcescens IBRL USM 84 associated with a marine sponge Xestospongia testudinaria.Journal of Applied Pharmaceutical Science, 2014, 4(10): 1–6.
[17] Venil CK, Lakshmanaperumalsamy P. An insightful overview on microbial pigment, prodigiosin.Electronic Journal of Biology, 2009, 5(3): 49–61.
[18] Antonisamy P, Ignacimuthu S. Immunomodulatory, analgesic and antipyretic effects of violacein isolated from Chromobacterium violaceum.Phytomedicine, 2010, 17(3/4): 300–304.
[19] Frandsen RJN, Nielsen NJ, Maolanon N, S?rensen JC, Olsson S, Nielsen J, Giese H. The biosynthetic pathway for aurofusarin in Fusarium graminearum reveals a close link between the naphthoquinones and naphthopyrones.Molecular Microbiology, 2006, 61(4): 1069–1080DOI:10.1111/mmi.2006.61.issue-4.
[20] Mahmud T, Lee S, Floss HG. The biosynthesis of acarbose and validamycin.The Chemical Record, 2001, 1(4): 300–310DOI:10.1002/(ISSN)1528-0691.
[21] Bai LQ, Li L, Xu H, Minagawa K, Yu Y, Zhang YR, Zhou XF, Floss HG, Mahmud T, Deng ZX. Functional analysis of the validamycin biosynthetic gene cluster and engineered production of validoxylamine A.Chemistry&Biology, 2006, 13(4): 387–397.
[22] Wu H, Qu S, Lu CY, Zheng HJ, Zhou XF, Bai LQ, Deng ZX. Genomic and transcriptomic insights into the thermo-regulated biosynthesis of validamycin in Streptomyces hygroscopicus 5008.BMC Genomics, 2012, 13(1): 337DOI:10.1186/1471-2164-13-337.
[23] Zhang H. Progress in research of absorbent decolorization.Modern Chemical Industry, 1998(7): 13–15(in Chinese).张亨. 吸附脱色研究进展.现代化工, 1998(7): 13–15.
[24] Denoya CD, Skinner DD, Morgenstern MR. A Streptomyces avermitilis gene encoding a 4-hydroxyphenylpyruvic acid dioxygenase-like protein that directs the production of homogentisic acid and an ochronotic pigment in Escherichia coli.Journal of Bacteriology, 1994, 176(17): 5312–5319.
[25] Funa N, Funabashi M, Ohnishi Y, Horinouchi S. Biosynthesis of hexahydroxyperylenequinone melanin via oxidative aryl coupling by cytochrome P-450 in Streptomyces griseus.Journal of Bacteriology, 2005, 187(23): 8149–8155DOI:10.1128/JB.187.23.8149-8155.2005.
[26] Shen YM, Yoon P, Yu TW, Floss HG, Hopwood D, Moore BS. Ectopic expression of the minimal whiE polyketide synthase generates a library of aromatic polyketides of diverse sizes and shapes.Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(7): 3622–3627DOI:10.1073/pnas.96.7.3622.
[27] Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA.Practical Streptomyces Genetics.Norwich:John Innes Foundation, 2000.
[28] He YL, Wang ZJ, Bai LQ, Liang JD, Zhou XF, Deng ZX. Two pHZ1358viaderivative vectors for efficient gene knockout in streptomyces.Journal of Microbiology and Biotechnology, 2010, 20(4): 678–682DOI:10.4014/jmb.
[29] Mason HS. The chemistry of melanin:Ⅲ.Mechanism of the oxidation of dihydroxyphenylalanine by tyrosinase.The Journal of Biological Chemistry, 1948, 172(1): 83–99.
[30] Davis MS, Solbiati J, Cronan Jr JE. Overproduction of acetylvia-CoA carboxylase activity increases the rate of fatty acid biosynthesis in Escherichia coli.The Journal of Biological Chemistry, 2000, 275(37): 28593–28598DOI:10.1074/jbc.M004756200.

相关话题/基因 生物 交换 微生物 培养