赵欣1, 吴忆宁1,2, 王岭1, 李伟明1,2, 靳敏1, 李帅1
1.哈尔滨工业大学市政环境工程学院, 黑龙江 哈尔滨 150090;
2.哈尔滨工业大学城市水资源和水环境国家重点实验室, 黑龙江 哈尔滨 150090
收稿日期:2016-03-21;修回日期:2016-06-05;网络出版日期:2016-07-01
基金项目:哈尔滨工业大学城市水资源与水环境国家重点实验室开放基金(HCK201509)
*通信作者:吴忆宁, Tel/Fax:+86-451-86282193;E-mail:liena68@sina.com
摘要: [目的]为探究UASB颗粒污泥启动的单室微生物电解池(Single-chamber microbial electrolysis cell,SMEC)对Ni(Ⅱ)的去除途径和SMEC中微生物群落的动态特征。[方法]以乙酸钠为底物,采用单因子控制方法分析SMEC对Ni(Ⅱ)的去除途径和应用Illumina高通量测序技术解析SMEC启动过程中微生物群落的组成和结构动态学特征。[结果]结果表明,SMEC对重金属的去除主要通过吸附和微生物作用。经培养驯化功能菌群发生变化。成熟单室微生物燃料电池(Single-chamber microbial fuel cell,SMFC)阳极生物膜菌群主要是Proteobacteria(变形菌门,91.42%)中的Geobacter sp.(地杆菌属,76.25%);阴极生物膜菌群主要是Bacteroidetes(拟杆菌门,47.99%)中的Niabella sp.(布鲁氏菌属,33.01%)和Proteobacteria(45.74%)中的Ochrobactrum sp.(苍白杆菌属,10.80%)。成熟SMFC改装成的SMEC在12.5 mg-Ni(Ⅱ)/L下,阳极生物膜菌群由单一优势菌Geobacter sp.转变为Geobacter sp.(41.56%)和Proteobacteria中的Azospirillum sp.(固氮螺菌属,5.97%);阴极生物膜菌群由Niabella sp.和Ochrobactrum sp.转变为Firmicutes(厚壁菌门,25.21%)中的Acetoanaerobium sp.(19.28%)、Proteobacteria(51.42%)中的Dokdonella sp.(16.48%)和Azospirillum sp.(9.49%)。[结论]本研究表明,污泥微生物经SMFC和SMEC驯化过程及Ni(Ⅱ)的淘汰和选择,在电极上形成了稳定、高效产电与除镍菌群,优势菌群为Proteobacteria。
关键词: 单室微生物电解池 除镍 Illumina高通量测序 菌群结构 环境的选择性 Proteobacteria
Removal of Ni (Ⅱ) and microbial dynamics in single-chamber microbial electrolysis cell
Zhao Xin1, Wu Yining1,2, Wang Ling1, Li Weiming1,2, Jin Min1, Li Shuai1
1.School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, Heilongjiang Province, China;
2.State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, Heilongjiang Province, China
Received 21 March 2016; Revised 05 June 2016; Published online 01 July 2016
*Corresponding author: Yining Wu, Tel/Fax:+86-451-86282193;E-mail:liena68@sina.com
Supported by the Open Project of State Key Laboratory of Urban Water Resource and Environment by the Harbin Institute of Technology (HCK201509)
Abstract: [Objective]Single-chamber microbial electrolysis cell (SMEC), inoculated by granular sludge from upflow anaerobic sludge bed, can remove Ni(Ⅱ). Therefore, it is of great significance to explore the role microbial community to remove Ni(Ⅱ) in SMEC.[Methods]With sodium acetate as substrate, single-factor control method and Illumina high-throughput sequencing were applied to analyze Ni(Ⅱ) removal, as well as microbial community structure and dynamic characteristics in SMEC.[Results]Adsorption and microbial functions were the major mechanisms for removing Ni(Ⅱ). In mature single-chamber microbial fuel cell (SMFC), Geobacter sp. of Proteobacteria (91.42%) was dominant on the anode with an abundance of 76.25% whereas Niabella sp. of Bacteroidetes (47.99%) was dominant on the cathode with an abundance of 33.01%, followed by Ochrobactrum sp. of Poribacteria (45.74%) accounting for 10.08%. In SMEC modified from mature SMFC with 12.5 mg-Ni(Ⅱ)/L, the dominant bacteria turned from single Geobacter sp. to Geobacter sp. (41.56%) and Azospirillum sp. (5.97%) on the anode; the dominant bacteria on the cathode turned from Niabella sp. and Ochrobactrum sp. to Acetoanaerobium sp. (19.28%), Dokdonella sp. (16.48%) and Azospirillum sp. (9.49%).[Conclusion]Microbial populations in raw sludge were selectively acclimated in the Ni(Ⅱ) removal process of SMEC, and effective microbial communities of electrogenesis and nickel removal were built on the electrode to promote the removal of Ni(Ⅱ) in SMEC.
Key words: single-chamber microbial electrolysis cell(SMEC) nickel removal Illumina high-throughput sequencing microbial community structure environment selective Proteobacteria
生物电化学系统(Bioelectrochemical systems, BES)基于产电微生物能够接受/释放电子的特性[1-3],通过阳极室内产电菌氧化分解有机物产生电子经电路传至阴极进污染物行还原或降解的过程,其可用于处理重金属废水进行资源回收及产电[4-6]。负氧化还原电位重金属离子(Ni2+、Zn2+等)[6-7]需要外加能量驱动才能发生还原,即在电解池/微生物电解池的作用下可实现重金属的还原,然而单室微生物电解池(Single-chamber microbial electrolysis cell, SMEC)结构应用于重金属的去除研究较少,SMEC具有更低的内阻,较电解池去除重金属具有低能耗的优点[8]。
单室微生物燃料电池(Single-chamber microbial fuel cell, SMFC)启动过程实际上是阳极和阴极富集高效产电菌群及有机物降解菌群的过程,阳极和阴极生物膜微生物群落的构成及含量组成了SMFC效能的基础。SMFC经驯化成熟后可改装成SMEC[9],SMEC对重金属的去除能力是通过驯化过程中逐步提高微生物对重金属的耐受能力以及其电化学还原能力而获得的。深入分析SMFC和SMEC电极生物膜产电及耐重金属微生物的组成、结构等动态学特征具有重要的实践意义。
本研究以升流式厌氧污泥床(Up-flow anaerobic sludge bed,UASB)颗粒污泥为种泥,乙酸钠为碳源,将成熟SMFC改装成SMEC并经过长期驯化后用于探究不同SMEC对12.5 mg-Ni/L的去除途径,利用高通量测序技术对原始泥样、成熟SMFC和SMEC的电极生物膜菌群结构和组成进行解析,揭示了SMFC对产电菌群的选择作用以及SMEC对耐镍菌的选择作用和菌群特征。
1 材料和方法 1.1 SMEC和电极材料 本研究采用的SMEC由有机玻璃制成圆柱腔体正方体结构,有效容积28 mL,如图 1所示。阳极为碳刷,阴极为碳布[10]。SMFC在100 mmol/L磷酸盐缓冲液(Phosphate buffered saline, PBS)、乙酸钠1.28 g/L、初始pH 6.0、温度(35±1) ℃和外加电阻1000 Ω的条件下启动培养,SMEC通过成熟SMFC改装获得,使用胶垫隔绝阴极碳布与空气的接触维持缺氧状态,通过开关电源控制外加电压为0.7 V并用万用表定期不定期进行校准。在外加电阻10 Ω的条件下进行序批式试验,周期为48 h。反应器菌种来自成熟UASB污泥颗粒,含镍模拟废水使用NiCl2进行配制。
图 1. SMFC和SMEC的结构示意图 Figure 1. The schematic diagram of SMFC and SMEC. |
图选项 |
1.2 分析方法 SMEC反应器电路中外电阻两端的电压采用自动数据采集系统(PISO-813,泓格,台湾)每隔30 min采集1次数据,可溶Ni2+的测量采用电感耦合等离子体原子发射光谱法(ICP-AES)。采用引物341F (5′-CCTACGGGNGGCWGCAG-3′)和805R (5′-GACTACHVGGGT ATCTAATCC-3′)扩增细菌16S rDNA的V3-V4区域,序列检测通过Illumina MiSeq平台测定(上海,生工生物工程股份有限公司)。测得的序列通过拼接及筛选后,按其序列间的距离对它们进行聚类,使用Uclust软件(Uclust v1.1.579)以相似性97%进行操作分类单元(OTU)聚类,操作分类单元被认为可能接近于属。物种分类(门、纲、目、科、属)通过软件RDP classifier进行,分类阈值默认为0.8。按文献[11]的方法分析微生物群落的ACE、Chao1、Shannon、Simpson多样性指数、种类组成和相对丰度。
2 结果和分析 2.1 SMEC启动与驯化 如图 2-A所示,SMFC运行300 h后,电压可持续稳定达到(0.570±0.005) V (外加电阻1000 Ω),经转变为SMEC后,在0.3 V外加电压下,负载10 Ω的电压输出在(0.020±0.003) V,电流密度达到(70.3±10.2) A/m3,与Qin等[6]结果相似。SMEC运行48 h时,5 mg-Ni(Ⅱ)/L和1000 mg-COD/L的去除率分别可达到(62.1±3.7)%和(68.2±4.7)%,与双室MEC去除率相当[6],但去除速率高于双室(图 2-B)。外接电压依次递增至0.7 V,驯化3-4个周期,稳定后开始试验。
图 2. SMEC启动与驯化过程中电压输出(A)及Ni(Ⅱ)和COD的去除效果(B) Figure 2. The output voltage of SMEC during starting up and acclimation (A) and the removal efficiencies of Ni(Ⅱ) and COD in SMEC during the acclimation (B). |
图选项 |
2.2 SMEC去除Ni(Ⅱ)的途径分析 本研究证实SMEC可以有效的去除含镍废水中的Ni(Ⅱ),与Qin等结果相似[6]。为探究Ni(Ⅱ)的去除途径,本试验考察了未培养SMEC (uSMEC),灭活SMEC (mSMEC)即已驯化成功2个月的SMEC经121 ℃下20 min高温高压灭活,以及成熟SMEC对Ni(Ⅱ)的去除效果。在pH 6.0、12.5 mg-Ni(Ⅱ)/L条件下,培养48 h后对Ni(Ⅱ)进行检测分析,结果如图 3所示。
图 3. 不同SMEC对Ni(Ⅱ)的48 h去除效果 Figure 3. Ni2+ removal efficiencies at 48 h in different SMEC including uncultured SMEC, autoclaved SMEC and mature SMEC, respectively. |
图选项 |
由图 3中可知,不同SMEC对Ni(Ⅱ)的去除率——SMEC > mSMEC > uSMEC。uSMEC、mSMEC均对Ni(Ⅱ)具有一定的去除,经过48 h培养去除率分别稳定在(25.6±2.3)%和(45.4±3.4)%,低于成熟SMEC的(70.7±3.3)%,但3组反应器的出水Ni(Ⅱ)浓度仍较高,分别为(9.34±0.29)、(6.97±0.43)和(3.65±0.41) mg/L。比较反应器的结构差异,uSMEC去除Ni(Ⅱ)主要通过电极材料(阳极碳纤维和阴极碳布)对Ni(Ⅱ)的吸附;而mSMEC对Ni(Ⅱ)的去除是电极材料和吸附在其上的微生物质共同吸附作用所致;SMEC对Ni(Ⅱ)去除效果最好,是除共同吸附途径外微生物的存在促进了重金属[Cu(Ⅱ)、Ni(Ⅱ)等]的还原去除[12],进一步提高了Ni(Ⅱ)的去除率。假设在SMEC中Ni(Ⅱ)的去除主要有2种途径:材料吸附、微生物作用,那么可以得出:在本实验中材料吸附(uSMEC)为25.6%,微生物作用包括微生物吸附(mSMEC-uSMEC) 19.8%和生物电化学还原(SMEC-mSMEC) 25.3%,即45.1%,实验结果与Abourached等[13]研究的SMFC去除Zn(Ⅱ)和Cd(Ⅱ)结果相似,但SMEC中重金属离子的还原率高于SMFC。
2.2 阳极和阴极上生物膜群落结构响应
2.2.1 微生物种群丰度和多样性 利用Illumina高通量测序技术对UASB泥样(OS)、成熟SMFC和在12.5 mg-Ni(Ⅱ)/L运行良好的SMEC的碳刷阳极(分别记为A0、A1)和碳布阴极(分别记为C0、C1)上的生物膜进行微生物群落结构分析,优化序列在7000-10000,平均长度在400 bp,具有代表性。生物膜群落中序列以97%的相似度进行差异性划分,如表 1所示,OS的ACE、Chao1和Shannon指数最大(5146、3368和6.12)菌群多样性最大,其次为C1、C0、A1、A0。其中ACE和Chao1指数用于评价微生物群落的丰富度,相比较大于OTUs数,表明仍有未检测到,这说明微生物群落结构的多样性丰富(表 1)。Shannon和Simpson指数表征微生物的多样性,其中阴极样品C1中微生物群落多样性最好,阴极和阳极微生物的多样性存在很大的差异(表 1)。 表 1. 测序数据指数汇总 Table 1. Similarity-based OTUs and species richness and diversity estimates of microbial communities from SMFC and SMEC
Samples | Sequence number | OTUs | ACE | Chao1 | Shannon | Simpson | Coverage/% |
OS | 9406 | 1727 | 5146 | 3368 | 6.12 | 0.008 | 90.06 |
A0 | 11070 | 586 | 2417 | 1603 | 2.52 | 0.398 | 96.78 |
A1 | 11115 | 511 | 1991 | 1262 | 3.72 | 0.070 | 97.41 |
C0 | 9226 | 568 | 1817 | 1226 | 3.95 | 0.086 | 96.73 |
C1 | 7465 | 932 | 3766 | 2412 | 5.08 | 0.019 | 92.53 |
表选项
2.2.2 生物群落差异性分析 为了深入分析微生物群落的结构差异,对A0、C0、A1和C1进行OTU韦恩图分析(图 4)。阳极微生物群落的总OTUs数(A0、C0、A1和C1)为1940个,但其中共有的仅有56个OTUs (占总数的2.9%),A0和A1共有OTUs114个(占总数的5.9%),共有微生物主要属于菌门Proteobacteria的Geobacter sp.属。而阴极微生物群落共有OTUs数有113个(占总数5.8%),共有微生物主要属于菌门Proteobacteria。
图 4. 基于细菌操作单元(OTUs)的SMFC和SMEC电极微生物群落维恩图 Figure 4. Venn diagram of microbial communities from electrodes in the SMFC and SMEC based on OTUs. |
图选项 |
如图 5所示,按照97%的同源性对样品建立进化树,可知A0和A1具有同源性,C0和C1具有同源性,与试验结果相似。A0、C0、A1、C1与OS的菌群结构具有相当的差异,阴极菌群多样性高,阳极菌群功能菌结构单一。
图 5. 细菌系统发育树 Figure 5. Bacterial phylogenetic tree. OS, original sludge; A0, anodic biofilm of the matured SMFC; A0, anodic biofilm of matured SMEC; C0, cathodic biofilm of the matured SMFC; A0, cathodic biofilm of matured SMEC. |
图选项 |
2.2.3 微生物群落结构 为了分析微生物群落结构变化,对原始UASB泥样(OS)、成熟SMFC及在12.5 mg-Ni(Ⅱ)/L下运行良好的SMEC阳极和阴极微生物菌群按门、属水平进行分类(图 6)。由图 6-A可知,SMEC阳极和阴极生物膜上细菌在门分类水平主要属于Proteobacteria (变形菌门)、Firmicutes (厚壁菌门)和Bacteroidetes (拟杆菌门)。Proteobacteria在上述所有样品中所占比例均最大,从原始泥样OS的39.58%升至A0的91.42%,但在SMEC去除Ni(Ⅱ)过程中,降至79.38% (A1);反而阴极生物膜从45.74% (C0)增加至51.42% (C1)。Firmicutes在阳极和阴极生物膜上含量逐渐增加,分别从SMFC的2.48% (A0)和2.22% (C0)增加到13.45% (A1)和25.21% (C1),而Bacteroidetes在阳极和阴极生物膜上含量逐渐降低,分别从SMFC的4.82% (A0)和47.99% (C0)降低到1.33% (A1)和12.98% (C1);结果表明Proteobacteria、Firmicutes和Bacteroidetes为主要的产电菌门及耐重金属性菌门。
图 6. SMEC与SMFC阳极和阴极生物膜上及原始泥样细菌在门(A)和属(B)分类水平上的分布 Figure 6. Relative abundances of phylum (A) and genus (B) level phylogenetic groups based on sequencing of 16S rDNA-gene. Amplicons showing structures of bacterial communities in the original sludge(OS), anode (A0) and cathode (C0) biofilms of SMFC without Ni(Ⅱ), anode (A1) and cathode (C1) biofilms of SMEC with 12.5 mg-Ni(Ⅱ)/L. |
图选项 |
为了解析成熟SMFC与SMEC菌群结构及功能作用,对属水平的菌群进行分析,由图 6-B可知,成熟SMFC中优势菌属为Geobacter sp. (地杆菌属,76.66%;属于Proteobacteria,A0),而在SMEC去除12.5 mg-Ni(Ⅱ)/L的阳极生物膜上优势菌属为Geobacter sp. (41.56%,A1)和Azospirillum sp. (固氮螺菌属,5.97%;属于Proteobacteria,A1)。SMFC和SMEC阴极上菌群多样性较阳极更复杂,含量大于3%的阴极共有11个高于阳极的7个,其中Niabella sp.菌属在SMFC阳极生物膜上含量较低(布鲁氏菌属,0.07%;属于拟杆菌门,A0),而在C0中含量高达33.01% (C0);经Ni(Ⅱ)的驯化后,SMEC阴极微生物膜上含量降低至1.67% (C1)。Azospirillum sp. (固氮螺菌属,属于变形菌门)在阳极和阴极生物膜上含量逐渐降增加,分别从SMFC的0.97% (A0)和1.63% (C0)增加到5.97% (A1)和9.49% (C1);Acetoanaerobium sp. (属于厚壁菌门)和Dokdonella sp. (属于变形菌门)在阳极微生物膜上含量低于1%,而在阴极微生物膜上分别从0 (A0含量为0.14%)和2.15% (C0)增加至19.28%和16.48% (C1);SMEC加镍后于Ochrobactrum sp.在阴极生物膜上含量直接从10.80%降至0.18%。结果表明阳极产电及耐镍菌主要为Geobacter sp.和Azospirillum sp.,SMFC阴极上产电菌主要为Niabella sp.和Ochrobactrum sp.,SMEC阴极主要耐镍菌为Azospirillum sp.、Acetoanaerobium sp.和Dokdonella sp.。 总之,SMFC和SMEC生物膜在启动驯化及Ni(Ⅱ)去除过程中对污泥中的微生物进行淘汰和选择,最终形成了高效产电、有机物厌氧发酵与耐镍菌。
2.2.4 阳极和阴极生物膜上菌群互作关系 以乙酸钠为底物去除Ni(Ⅱ)的SMEC中阳极和阴极微生物群落中,其中产电菌以Proteobacteria、Firmicutes和Bacteroidetes为主,丰富的菌群结构和均匀分布有利于SMEC去除污染物及增强抵抗外界的不良环境(重金属)。阳极微生物群落优势菌属为Geobacter sp. (C0和C1含量50%以上),Geobacter sp.包括Geobacter metallireducens (金属还原地杆菌)[14]和Geobacter sulfurreducens (硫还原泥土杆菌)[14],存在纳米导线或导电相关的细胞色素参与电子生产和传输过程促进了重金属Ni(Ⅱ)的还原及产电[3, 15-18],但在阴极含量低于2%,且阴极微生物的多样性高于阳极微生物的多样性。随着Ni(Ⅱ)的添加,微生物的含量在阴极及阳极上发生了相互的转化,如Niabella sp.和Brucella sp.含量降低至1%以下,而Acetoanaerobium sp.和Dokdonella sp.含量增加,说明Ni(Ⅱ)对SMFC的电极菌群进行了淘汰和选择,使其耐受和还原镍的能力及降解有机物的能力大幅度提高。 3 结论 通过对比SMFC、mSMFC和uSMEC对Ni(Ⅱ)的去除,确定SMEC对Ni(Ⅱ)的去除途径主要是材料吸附(25.6%)、微生物吸附(19.8%)和微生物电化学还原(25.3%)。成熟SMFC和SMEC的阳极和阴极生物膜上优势产电菌菌门为Proteobacteria、Firmicutes和Bacteroidetes。Ni(Ⅱ)对阳极和阴极生物膜上的菌群进行了淘汰和选择,SMFC阳极生物膜以Geobacter sp. (76.25%)为主,加入Ni(Ⅱ)后优势菌属变为Geobacter sp. (41.56%)和Azospirillum sp. (5.97%),阴极生物膜上的微生物多样性高于阳极,在SMFC优势菌属为Niabella sp. (33.01%)和Ochrobactrum sp. (10.8%),而在SMEC中二者含量较低,优势菌属变为Acetoanaerobium sp. (19.28%)、Dokdonella sp. (16.48%)和Azospirillum sp. (9.49%)。
参考文献
[1] | Logan BE, Hamelers B, Rozendal R, Schr?der U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K. Microbial fuel cells:methodology and technology.Environmental Science&Technology, 2006, 40(17): 5181–5192. |
[2] | Zhang YF, Angelidaki I. Microbial electrolysis cells turning to be versatile technology:recent advances and future challenges.Water Research, 2014, 56: 11–25DOI:10.1016/j.watres.2014.02.031. |
[3] | Lovley DR. Electromicrobiology.Annual Review of Microbiology, 2012, 66: 391–409DOI:10.1146/annurev-micro-092611-150104. |
[4] | Modin O, Wang XF, Wu X, Rauch S, Fedje KK. Bioelectrochemical recovery of Cu, Pb, Cd, and Zn from dilute solutions.Journal of Hazardous Materials, 2012, 235/236: 291–297DOI:10.1016/j.jhazmat.2012.07.058. |
[5] | Huang LP, Chai XL, Cheng SA, Chen GH. Evaluation of carbon-based materials in tubular biocathode microbial fuel cells in terms of hexavalent chromium reduction and electricity generation.Chemical Engineering Journal, 2011, 166(2): 652–661DOI:10.1016/j.cej.2010.11.042. |
[6] | Qin BY, Luo HP, Liu GL, Zhang RD, Chen SS, Hou YP, Luo Y. Nickel ion removal from wastewater using the microbial electrolysis cell.Bioresource Technology, 2012, 121: 458–461DOI:10.1016/j.biortech.2012.06.068. |
[7] | Luo HP, Qin BY, Liu GL, Zhang RD, Tang YB, Hou YP. Selective recovery of Cu2+ and Ni2+ from wastewater using bioelectrochemical system.Frontiers of Environmental Science&Engineering, 2015, 9(3): 522–527. |
[8] | Huang LP, Guo R, Jiang LJ, Quan X, Sun YL, Chen GH. Cobalt leaching from lithium cobalt oxide in microbial electrolysis cells.Chemical Engineering Journal, 2013, 220: 72–80DOI:10.1016/j.cej.2012.12.092. |
[9] | Li Y, Wu YN, Puranik S, Lei Y, Vadas T, Li BK. Metals as electron acceptors in single-chamber microbial fuel cells.Journal of Power Sources, 2014, 269: 430–439DOI:10.1016/j.jpowsour.2014.06.117. |
[10] | Lu L.Enhanced hydrogen production from biomass in microbial electrolysis cells and the environmental responses of anodophilic community structures.Doctor Dissertation of Harbin Institute of Technology, 2012.(in Chinese) 路璐.生物质微生物电解池强化产氢及阳极群落结构环境响应.哈尔滨工业大学博士学位论文, 2012. http://cdmd.cnki.com.cn/article/cdmd-10213-1013035368.htm |
[11] | Qin JJ, Li RQ, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li JH, Xu JM, Li SC, Li DF, Cao JJ, Wang B, Liang HQ, Zheng HS, Xie YL, Tap J, Lepage P, Bertalan M, Batto JM, Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu HM, Yu C, Li ST, Jian M, Zhou Y, Li YR, Zhang XQ, Li SG, Qin N, Yang HM, Wang J, Brunak S, Doré J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J, Bork P, Ehrlich SD, Wang J. A human gut microbial gene catalogue established by metagenomic sequencing.Nature, 2010, 464(7285): 59–65DOI:10.1038/nature08821. |
[12] | Yal?inkaya Y, Arica MY, Soysal L, Denizli A, Gen? O, Bekta? S. Cadmium and mercury uptake by immobilized Pleurotus sapidus.Turkish Journal of Chemistry, 2002, 26(3): 441–452. |
[13] | Abourached C, Catal T, Liu H. Efficacy of single-chamber microbial fuel cells for removal of cadmium and zinc with simultaneous electricity production.Water Research, 2014, 51: 228–233DOI:10.1016/j.watres.2013.10.062. |
[14] | Rotaru AE, Shrestha PM, Liu FH, Markovaite B, Chen SS, Nevin KP, Lovley DR. Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri.Applied and Environmental Microbiology, 2014, 80(15): 4599–4605DOI:10.1128/AEM.00895-14. |
[15] | Methé BA, Nelson KE, Eisen JA, Paulsen IT, Nelson W, Heidelberg JF, Wu D, Wu M, Ward N, Beanan MJ, Dodson RJ, Madupu R, Brinkac LM, Daugherty SC, DeBoy RT, Durkin AS, Gwinn M, Kolonay JF, Sullivan SA, Haft DH, Selengut J, Davidsen TM, Zafar N, White O, Tran B, Romero C, Forberger HA, Weidman J, Khouri H, Feldblyum TV, Utterback TR, Van Aken SE, Lovley DR, Fraser CM. Genome of Geobacter sulfurreducens:metal reduction in subsurface environments.Science, 2003, 302(5652): 1967–1969DOI:10.1126/science.1088727. |
[16] | Chen SS, Rotaru AE, Liu FH, Philips J, Woodard TL, Nevin KP, Lovley DR. Carbon cloth stimulates direct interspecies electron transfer in syntrophic co-cultures.Bioresource Technology, 2014, 173: 82–86DOI:10.1016/j.biortech.2014.09.009. |
[17] | Speers AM, Reguera G. Electron donors supporting growth and electroactivity of Geobacter sulfurreducens anode biofilms.Applied and Environmental Microbiology, 2012, 78(2): 437–444DOI:10.1128/AEM.06782-11. |
[18] | Embree M, Qiu Y, Shieu W, Nagarajan H, O'Neil R, Lovley D, Zengler K. The iron stimulon and fur regulon of Geobacter sulfurreducens and their role in energy metabolism.Applied and Environmental Microbiology, 2014, 80(9): 2918–2927DOI:10.1128/AEM.03916-13. |