赵帅1, 周娜1, 赵振勇1, 张科1, 吴国华2, 田长彦1
1.中国科学院新疆生态与地理研究所荒漠与绿洲生态国家重点实验室, 新疆 乌鲁木齐 830011;
2.石嘴山市种子管理站, 宁夏 石嘴山 753000
收稿日期:2015-12-28;修回日期:2016-03-14;网络出版日期:2016-03-21
基金项目:国家自然科学基金(31300432);中国科学院西部青年****项目(2015-XBQN-B-16);中国科学院“率先行动”计划特色研究所主要服务项目(TSS-2015-014-FW-3-1);中国科学院科技服务网络计划项目(KFJ-SW-STS-141)
*通信作者:田长彦,Tel:+86-991-7885301;Fax:+86-991-7885320;E-mail:tianchangyan@hotmail.com
摘要: [目的]揭示同一盐渍环境中不同种盐生植物根部内生细菌群落多样性特征和分布规律,结合根际土壤理化因子探讨其对内生细菌群落结构的影响。[方法]通过罗氏454高通量测序获得内生细菌16S rRNA片段,然后进行生物信息分析。[结果]研究的16种盐生植物其内生细菌群落主要由Proteobacteria、Tenericutes、Actinobacteria和Firmicutes 4个门的细菌组成。从植物“种”的水平来看,不同种盐生植物内生细菌群落存在差异;从植物“属”的水平来看,同一属的盐生植物内生细菌相似;从植物“科”的水平来看,藜科盐生植物内生细菌以Actinobacteria和Proteobacteria门为主;蒺藜科盐生植物内生细菌以Proteobacteria门为主;柽柳科盐生植物内生细菌以Tenericutes门为主;白花丹科盐生植物内生细菌以Proteobacteria、Fimicutes和Actinobacteria门为主。根际土壤中Cl-含量对盐生植物内生细菌群落变化具有显著影响;而Cl-、Mg2+和总氮组成的集合与内生细菌群落结构相关性最高。[结论]盐生植物内生细菌多样性丰富。在同一盐渍生境中,盐生植物内生细菌群落分布呈现宿主的种属特异性,根际土壤中Cl-是影响其内生细菌群落变化的主要驱动因素之一。
关键词: 盐生植物 内生细菌 多样性 焦磷酸测序
Estimation of endophytic bacterial diversity in root of halophytes in Northern Xinjiang by high throughput sequencing
Zhao Shuai1, Zhou Na1, Zhao Zhenyong1, Zhang Ke1, Wu Guohua2, Tian Changyan1
1.State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang Uygur Autonomous Region, China;
2.Shizuishan Seed Management Station, Shizuishan 753000, Ningxia Hui Autonomous Region, China
Received 28 December 2015; Revised 14 March 2016; Published online 21 March 2016
*Corresponding author: Tel:+86-991-7885301;Fax:+86-991-7885320;E-mail:tianchangyan@hotmail.com
Supported by the National Natural Science Foundation of China (31300432) and by the Chinese Academy of Sciences (2015-XBQN-B-16, TSS-2015-014-FW-3-1, KFJ-SW-STS-141)
Abstract: [Objective] We studied the diversity of endophytic bacterial communities in different species of halophytes growing in the same saline habitat, and analyzed the effect of rhizosphere soil physicochemical properties on endophytic bacterial communities. [Methods] PCR-based Roche FLX 454 pyrosequencing was applied to reveal the diversity of endophytic bacteria. [Results] Endophytic bacterial communities of the 16 species of halophytes mainly included 4 phyla, which were Proteobacteria, Tenericutes, Actinobacteria and Firmicutes. In terms of plant species classification, colonial differences existed among plant species at perspectives of composition of bacterial taxa; in the case of plant genus level, endophytic bacteria of different halophyte plant species but belonging to same plant genus exhibited similarity; as to plant family level, Actinobacteria and Proteobacteria comprised the main abundant phyla of the halophytes belonging to Chenopodiaceae; Proteobacteria comprised the main abundant phyla of the halophytes belonging to Zygophyllaceae; Tenericutes comprised the main abundant phyla of the halophytes belonging to Tamaricaceae; Proteobacteria, Fimicutes and Actinobacteria comprised the main abundant phyla of the halophytes belonging to Plumbaginaceae. The Cl- in rhizosphere soil has significant effect on endophytic bacterial community structure. Moreover, there is a strong correlation between bacterial community and the combination of Cl-, Mg2+ and total nitrogen. [Conclusion] Halophytes harbors diverse endophytic bacteria. In the same saline habitat, the distribution of endophytic bacteria showed host plant species-specific, and the Cl- in rhizosphere soil was one of the factors determined the endophytic bacterial community.
Key words: halophyte endophytic bacteria diversity pyrosequencing
盐生植物是一类能在大约200 mmol/L NaCl溶液或更高盐浓度环境中生长并完成生活史的植物,其对盐分胁迫适应性具有复杂的生化和遗传机制[1]。然而研究表明植物对逆境的抗性或耐性并不只来自于植物基因组本身,植物共生微生物对宿主逆境胁迫适应也具有重要影响,是植物基因组的有效延伸[2]。因此,盐生植物共生微生物的相关研究逐渐引起****们的关注。目前,国内外已对部分地区的部分盐生植物内生微生物多样性进行了报道[3-9],但其研究重点主要集中在红树林生态系统和沿海滩涂生境,而较少涉及内陆干旱盐土区的盐生植物内生细菌多样性。
新疆是中国最大的内陆盐土区,这里气候干旱,盐渍土不仅盐分高而且偏碱性,严重限制植物的分布和生存;但在这样的环境中却发育着丰富的盐生植物,其中一些盐生植物在新疆盐生荒漠植被形成过程中起着主要建群作用,被认为是适合土壤修复的类群。生长在这里的主要建群或优势盐生植物,其内生细菌群落结构特征如何?在自然盐渍环境中,盐生植物常以单一种类形成群落,不同种盐生植物若生活在相同的盐渍环境中,其内生细菌群落分布有何规律?如果存在差异,其驱动因素是什么?这些问题均尚待解答。基于此,我们选取阜康荒漠生态国家野外科学观测研究站(阜康荒漠站)盐生植物园的多种建群或优势盐生植物,采用454高通量法分析其内生细菌群落多样性和分异规律。
1 材料和方法 1.1 样品采集 于新疆阜康荒漠站盐生植物园(N 44°17′E87°55′,海拔476 m),选取处于花果期的16种多年生盐生植物(种植年限均为3年),种类如表 1所示,每种植物随机选取3株,采集根部后带回实验室。盐生植物根际土壤理化性质数据如表 2所示,包括pH、水溶性盐含量、7种离子含量、有机质含量、有机碳含量、总氮含量、总磷含量、速效磷含量和速效钾含量。
表 1. 选取的盐生植物种类 Table 1. Species of halophyte for the study
Family | Genus | Species |
Chenopodiaceae | Kalidium | Kalidium foliatum, Kalidium capsicum |
Suaeda | Suaeda physophora, Suaeda microphylla | |
Haloxylon | Haloxylon ammodendron | |
Halocnemum | Halocnemum strobilaceum | |
Halostachys | Halostachys caspica | |
Zygophyllaceae | Nitraria | Nitraria sibirica, Nitraria roborowskii, Nitraria tangutorum |
Tamaricaceae | Tamarix | Tamarix hispida, Tamarix ramosissima |
Reaumuria | Reaumuria soongorica | |
Plumbaginaceae | Limonium | Limonium gmelinii, Limonium otolepis, Limonium aureum |
表选项
表 2. 土壤样品的基本理化性质 Table 2. Physical and chemical properties of soil samples
ID | pH | TS/ (g/kg) | HCO3–/ (g/kg) | Cl–/ (g/kg) | SO42–/ (g/kg) | Ca2+/ (g/kg) | Mg2+/ (g/kg) | K+/ (g/kg) | Na+/ (g/kg) | OM/ (g/kg) | TC/ (g/kg) | TN/ (g/kg) | TP/ (g/kg) | AP/ (mg/kg) | AK/ (mg/kg) |
3 | 8.32±0.07 | 15.7±1.8 | 0.29±0.01 | 0.68±0.02 | 9.9±0.3 | 2.5±0.2 | 0.17±0.06 | 0.17±0.02 | 1.94±0.03 | 9.6±1.1 | 5.4±1.2 | 0.26±0.06 | 0.93±0.02 | 30.2±8.4 | 505±10 |
4 | 8.34±0.08 | 21.3±2.0 | 0.12±0.07 | 0.19±0.01 | 14.3±0.2 | 2.4±0.6 | 0.12±0.02 | 0.15±0.01 | 3.94±0.04 | 4.3±0.8 | 2.5±0.2 | 0.26±0.07 | 0.72±0.05 | 14.7±1.6 | 360±8 |
5 | 7.80±0.04 | 18.5±1.2 | 0.25±0.04 | 0.18±0.06 | 7.8±0.7 | 1.9±0.3 | 0.23±0.04 | 0.08±0.01 | 0.17±0.09 | 4.7±0.9 | 2.7±0.3 | 0.31±0.03 | 0.92±0.02 | 11.3±1.8 | 425±9 |
6 | 8.23±0.06 | 7.9±0.9 | 0.25±0.06 | 0.63±0.07 | 5.0±0.8 | 1.8±0.7 | 0.21±0.06 | 0.09±0.02 | 1.41±0.07 | 7.3±1.5 | 4.2±0.4 | 0.30±0.01 | 0.82±0.05 | 11.7±1.2 | 289±11 |
7 | 7.81±0.03 | 11.5±0.8 | 0.31±0.07 | 0.11±0.04 | 7.7±0.4 | 2.6±0.1 | 0.23±0.02 | 0.10±0.01 | 0.36±0.09 | 6.0±1.0 | 3.4±0.9 | 0.24±0.06 | 0.80±0.01 | 10.9±1.2 | 295±12 |
8 | 7.78±0.06 | 11.7±0.8 | 0.24±0.05 | 1.25±0.01 | 6.5±0.8 | 1.1±0.3 | 0.16±0.01 | 0.10±0.02 | 1.00±0.09 | 4.9±0.7 | 2.8±64 | 0.22±0.04 | 0.93±0.02 | 10.8±1.2 | 425±14 |
9 | 8.47±0.10 | 7.4±1.0 | 0.19±0.02 | 0.73±0.09 | 6.9±0.4 | 2.2±0.4 | 0.29±0.03 | 0.09±0.02 | 1.79±0.05 | 5.8±0.7 | 3.4±1.0 | 0.24±0.04 | 0.79±0.06 | 12.8±1.0 | 320±11 |
10 | 8.39±0.11 | 15.6±1.1 | 0.18±0.08 | 0.72±0.01 | 10.3±0.1 | 2.2±0.1 | 0.12±0.01 | 0.18±0.05 | 1.09±0.08 | 6.9±1.5 | 4.0±1.3 | 0.34±0.03 | 0.922±0.02 | 18.1±2.5 | 320±7 |
11 | 8.20±0.14 | 15.0±1.7 | 0.31±0.08 | 0.38±0.09 | 9.7±0.1 | 3.2±0.7 | 0.07±0.01 | 0.18±0.07 | 1.06±0.04 | 12.8±2.1 | 7.4±1.5 | 0.37±0.01 | 1.05±0.01 | 36.8±11.2 | 524±16 |
12 | 8.16±0.12 | 15.5±1.9 | 0.32±0.06 | 0.83±0.04 | 9.6±0.6 | 3.3±0.7 | 0.06±0.01 | 0.13±0.04 | 1.18±0.05 | 5.9±0.6 | 3.4±0.4 | 0.21±0.04 | 0.85±0.07 | 16.2±1.4 | 369±10 |
13 | 7.89±0.08 | 12.2±1.4 | 0.19±0.04 | 0.08±0.01 | 8.3±0.3 | 2.7±0.9 | 0.18±0.02 | 0.08±0.03 | 0.52±0.05 | 5.1±1.0 | 3.0±0.1 | 0.25±0.04 | 0.87±0.05 | 20.6±1.9 | 332±13 |
14 | 8.25±0.12 | 3.4±0.4 | 0.31±0.09 | 0.19±0.03 | 1.8±0.3 | 0.2±0.0 | 0.09±0.03 | 0.05±0.01 | 0.70±0.08 | 4.4±0.7 | 2.5±0.9 | 0.20±0.05 | 0.60±0.01 | 4.4±0.8 | 192±9 |
15 | 7.88±0.05 | 9.7±0.9 | 0.19±0.01 | 0.27±0.05 | 6.3±0.2 | 2.0±0.2 | 0.01±0.00 | 0.09±0.01 | 0.87±0.06 | 4.7±0.7 | 2.8±0.6 | 0.22±0.05 | 0.78±0.04 | 11.2±0.6 | 354±15 |
16 | 7.88±0.08 | 11.8±1.2 | 0.25±0.04 | 0.15±0.02 | 7.8±0.6 | 2.8±0.1 | 0.16±0.05 | 0.12±0.01 | 0.57±0.06 | 6.3±1.2 | 3.7±0.8 | 0.26±0.01 | 0.95±0.04 | 13.4±0.8 | 311±10 |
17 | 8.14±0.04 | 16.9±1.4 | 0.38±0.05 | 0.30±0.08 | 11.1±0.9 | 2.5±0.2 | 0.12±0.03 | 0.16±0.05 | 2.39±0.04 | 8.0±1.8 | 4.7±0.2 | 0.27±0.07 | 1.02±0.08 | 15.2±3.2 | 428±8 |
18 | 8.32±0.13 | 1.9±0.3 | 0.31±0.07 | 0.04±0.01 | 1.2±0.5 | 0.2±0.1 | 0.09±0.03 | 0.07±0.02 | 0.19±0.06 | 7.1±1.6 | 4.1±0.4 | 0.25±0.02 | 0.83±0.01 | 12.3±2.4 | 223±5 |
TS: total water soluble salt; OM: organic matte; TC: total organic carbon; TN: total nitrogen; TP: total phosphorus; AP: available phosphorous; AK: available potassium. |
表选项
1.2 表面消毒 植株根部冲洗去除浮土,超声波低频清洗3次,以去除表面土壤微粒和大部分附着微生物[10]。材料在75%乙醇中浸渍3 min,在活性氯为3.5%的次氯酸钠中浸泡3.5 min,用无菌水洗涤5次。使用印迹法:将表面消毒后的组织贴压在R2A培养基上,接触30 min后移去组织;此外,将最终的洗涤液涂布在R2A琼脂平板,将两种处理后的平板于28 ℃培养7 d。将最终的洗涤液提取总DNA,用细菌通用引物27f (5′-AGAGTTTAGTCCTGGC TCAG-3′)和1492r (5′-TACGGCTACCTTGTT ACGACTT-3′) 进行扩增,最后以无细菌生长和未检测到扩增的16S rRNA基因为合格标准[11]。
1.3 基因组DNA扩增 表面消毒后的样品加液氮研磨,取(1.0±0.1) g粉末提取总DNA(含细菌基因组DNA)[12]。对细菌16S rRNA V5-V9区扩增,PCR所用的引物为799F-1394R (融合F引物:5′-CGTATCGCCTCCCTC GCGCCATCAGNNNNNNNAACAGGATTAGATACCCTG-3′,融合R引物:5′-CTATGCGCCTTG CCAGCCCGCTCAGGGTTACCTTGTTACGACTT-3′。斜体并带下划线的为adapter序列,Ns为7个碱基的barcode序列)。50 μL反应体系:10 × PCR buffer 5 μL,dNTPs (10 mmol/L) 0.5 μL,Genomic DNA 10 ng,Bar-PCR primer 1 μL,Plantium Taq (5 U/μL) 0.5 μL。PCR扩增条件:94 ℃ 30 s,94 ℃ 20 s,45 ℃ 20 s,65 ℃ 60 s,5个循环;94 ℃ 20 s,60 ℃ 20 s,72 ℃ 20 s,20个循环;72 ℃ 延伸 5 min。获得的PCR产物进行琼脂糖电泳,使用琼脂糖回收试剂盒 (cat:SK8131)回收,进行5个循环的延伸扩增,条件:94 ℃ 2 min,94 ℃ 20 s,60 ℃ 20 s,72 ℃ 30 s。回收产物用Qubit 2.0定量,上海生工公司454平台测序。
1.4 数据分析 含有完整的barcode序列为有效序列,通过barcode使数据回归样品。质控筛选出长度>200 bp,无模糊碱基,平均质量分值>25,并在核糖体数据库(http://pyro.cme.msu.edu/)具有至少80%匹配度的优化序列用于后续分析[13]。通过MOTHUR软件(http://www.mothur.org/)中的‘Pre.cluster’ (http://www.mothur.org/wiki/Pre.cluster)完成校正,最大失配为1/150[14]。基于Silva序列数据库(http:// www.arb-silva.de/),使用MOTHUR检测并去除Chimeric序列[15]。采用RDP classifier (http://www.drive5.com/uclust/downloads1_1_579.html)将序列进行物种分类,在97%的水平计算操作分类单元(operational taxonomic units,OTUs)的数量[16]。所有序列已在GenBank SRA(Sequence Read Archive)提交;接受号为SRX969945。
在97%的阈值确定稀释度,采用MOTHUR软件计算Alpha多样性指数,包括丰富度指数(richness)[13]、香农指数 (Shannon Index)[17]、ACE指数[18]、Chao1指数[19]、文库覆盖率(Coverage)[13]。根据多序列队列构建代表性序列为节点的进化树,利用 Unifrac算法计算样本距离和样本聚类[20]。使用Canoco软件分析环境因子对细菌群落结构的影响,其中细菌在“纲”水平上的相对丰度作为物种数据[21]。通过Mantel-Carlo检验环境因子是否对细菌群落结构变化具有显著影响。采用R语言中的BioEnv程序筛选对细菌群落结构最具影响的环境因子集合。
2 结果和分析 2.1 测序结果 所有样品质控之后,序列平均长度均在440 bp以上,所得目标片段数量在1499-6455之间,样品OTUs数量在121-1507之间(表 3)。α多样性分析结果表明,不同样品Shannon、Chao1、ACE指数和覆盖率存在差异(表 3)。多枝柽柳、刚毛柽柳、琵琶柴这3种植物内生细菌文库丰度较差,其Shannon指数,Chao1和ACE指数较低。部分样品覆盖率低于80%,继续提高测序深度和覆盖率可能会发现更多的菌属。
表 3. 样品OTUs丰度和α多样性指数 Table 3. OTUs richness and diversity indices obtained from pyrosequencing analysis
ID | Host plant | Barcode | OTUs | Shannon | ACE | Chao1 | Coverage/% |
3 | Kalidium caspicum | CATGATG | 1507 | 6.6 | 3219.9 | 2465.1 | 83.1 |
4 | Haloxylon ammodendron | CGTCATA | 1214 | 6.4 | 3404.3 | 2339.0 | 78.5 |
5 | Nitraria tangutorum | ATGATCA | 1074 | 5.7 | 1873.0 | 1629.0 | 93.1 |
6 | Tamarix ramosissima | TAGTGCA | 121 | 3.5 | 261.7 | 207.7 | 99.4 |
7 | Suaeda microphylla | CTCTACA | 370 | 4.9 | 485.4 | 522.4 | 97.4 |
8 | Reaumuria soongorica | TATCTCA | 180 | 3.1 | 840.6 | 406.3 | 98.5 |
9 | Tamarix hispida | ACAGTAT | 191 | 3.9 | 350.2 | 271.0 | 98.5 |
10 | Nitraria sibirica | ACTGTCA | 836 | 5.6 | 1129.8 | 1111.9 | 94.5 |
11 | Kalidium foliatum | TATACTG | 786 | 5.7 | 3598.2 | 2053.7 | 79.7 |
12 | Limonium otolepis | CATGATG | 531 | 4.9 | 1648.3 | 1030.8 | 90.3 |
13 | Halocnemum strobilaceum | CGTCATA | 733 | 6.2 | 3186.0 | 1902.8 | 77.3 |
14 | Limonium gmelinii | ATGATCA | 702 | 5.2 | 1891.7 | 1340.3 | 88.0 |
15 | Halostachys caspica | TAGTGCA | 468 | 4.2 | 1597.6 | 1006.0 | 94.6 |
16 | Nitraria roborowskii | CTCTACA | 1024 | 6.0 | 2302.1 | 1737.7 | 85.8 |
17 | Limonium aureum | TATCTCA | 642 | 5.4 | 2370.1 | 1392.8 | 86.1 |
18 | Suaeda physophora | ACAGTAT | 446 | 4.3 | 991.4 | 784.4 | 95.9 |
表选项
2.2 多样性分析 内生细菌类群如图 1所示,16种盐生植物内生细菌主要分布于Proteobacteria、Tenericutes、Actinobacteria和Firmicutes 4个菌门;这4个门的细菌又分别以Gammaproteobacteria、Mollicutes、Actinobacteria和Bacilli纲为主。藜科盐生植物主要包含Actinobacteria门和Proteobacteria门;蒺藜科盐生植物主要包含 Proteobacteria门;柽柳科盐生植物主要包含Tenericutes门;白花丹科盐生植物主要包含Proteobacteria门、Fimicutes门和Actinobacteria门。每种植物中大于10%的菌属种类和比例存在明显差异,其中西伯利亚白刺(ID:10):Azomonas (24.0%)、Serpens (41.8%)、Pseudomonas (33.5%);唐古特白刺(ID:5):Azomonas (24.1%)、Serpens (39.2%)、Pseudomonas (26.5%);大果白刺(ID:16):Serpens (34.6%)、Pseudomonas (35.5%);梭梭(ID:4):Azomonas (13.9%)、Serpens (29.4%)、Pseudomonas (30.0%);盐爪爪(ID:11):Nesterenkonia (11.7%)、Brevibacterium (22.4%)、Halomonas (25.5%);里海盐爪爪(ID:3):Pseudomonas (10.2%)、Kocuria (10.1%);大叶补血草(ID:14):Kocuria (59.8%);耳叶补血草(ID:12):Nocardiopsis (18.4%)、TM7 (35.4%);黄花补血草(ID:17):Planomicrobium (44.2%)、TM7 (14.2%);多枝柽柳(ID:6):Acholeplasma (98.7%);刚毛柽柳(ID:9):Acholeplasma (97.8%);琵琶柴(ID:8):Acholeplasma (77.1%);盐节木(ID:13):Pantoea (44.6%);囊果碱蓬(ID:18):Pantoea (78.7%);小叶碱蓬(ID:7):Pantoea (93.5%);盐穗木(ID:15):Zymobacter (80.0%)。
图 1. 样品细菌类群丰度图 Figure 1. Relative abundances of bacterial taxa recovered from each sample analyzed with 454 sequencing. Taxa included are the phylum of 16S rRNA sequences in the full 454 data set; the ‘class’ with >0.1 % of 16S rRNA sequences respect to the total number of sequences in each sample; and the ‘genus’ with >1 % of 16S rRNA sequences respect to the total number of sequences in each sample. At each rank, all sequences that did not fit into one of these categories were classified as ‘other’. |
图选项 |
2.3 内生细菌群落的宿主特异性 对所有样品内生细菌OTUs进行聚类,结果如图 2所示,同一个属的盐生植物内生细菌群落结构相似。白刺属的3种白刺(ID:10、5、16)汇在一起,柽柳属的2种柽柳汇在一起(ID:6、9),碱蓬属的2种碱蓬汇在一起(ID:18、7),盐爪爪属的2种盐爪爪汇在一起(ID:3、11),补血草属的2种补血草汇在一起(ID:12、17),大叶补血草(ID:14)和其它2种补血草(ID:12、17)距离较远。4个单种属中,梭梭属(ID:4) 和白刺属植物距离较近,琵琶柴属(ID:8) 和柽柳属植物距离较近,盐节木属(ID:13) 和盐穗木属(ID:15)与碱蓬属植物距离较近。
图 2. 基于内生细菌种群相似性的植物物种聚类树图 Figure 2. Clusters that contain the essential 16S rRNA genes of endophytic bacteria. The calculation method of the distance to scale. The value of length represent the similarity of endophytic bacterial community between floral samples. Cluster analysis using R software. |
图选项 |
2.4 环境因子对内生细菌群落结构的影响 为进一步探明盐生植物根际土壤理化因子对其内生细菌群落结构的影响,对两者做典型对应分析,结果如图 3所示。所有环境变量对内生细菌“菌纲”的种类和比例在不同宿主中的分布变化总共具有22.2%的解释度。10个主要细菌纲的变化与根际土壤Cl-含量相关性最高,其次是Mg2+含量和TN含量。其中Mollicutes纲主要存在于柽柳科3种植物,其变化与Cl- 和Mg2+含量呈正相关;γ-proteobacteria纲的变化主要与TN含量呈正相关,与Cl-含量呈负相关;其余8个菌纲,包括Alphaproteobacteria、Betaproteobacteria、Deltaproteobacteria、Actinobacteria、Bacilli、Flavobacteria、Sphingobacteria和Deinococci的变化与Mg2+含量呈负相关。
图 3. 细菌群落与环境因子的典型对应分析 Figure 3. CCA showing associations between environmental variables and bacterial class. TS: total water soluble salt; OM: organic matte; TC: total organic carbon; TN: total nitrogen; TP: total phosphorus; AP: available phosphorous; AK: available potassium. |
图选项 |
Mantel-Carlo检验表明15种因子中只有Cl-离子对细菌群落变化的影响具有显著性 (P<0.05)。通过BioEnv 程序评价了不同环境因子及其集合对细菌群落结构的影响,结果如表 4所示,Cl-、Mg2+和TN的集合对细菌群落变化影响最为明显,相关系数最高(0.4054)。
表 4. 不同环境因子组合与细菌群落结构的相关关系 Table 4. The relationship between different combination of environmental variables and bacterial community
Different combination of environmental factors | Correlation coefficient |
Cl– | 0.2550 |
Cl–+Mg2+ | 0.3831 |
Cl–+Mg2++TN | 0.4054 |
Cl–+Mg2++TN+TP | 0.3705 |
pH+TS+ Cl–+Mg2++TN | 0.3326 |
pH+TS+ Cl–+Mg2++TN+TP | 0.3029 |
pH+TS+ Cl–+Ca2++Mg2++TN+TP | 0.2680 |
pH+TS+ Cl–+Ca2++Mg2++TN+TP+AK | 0.2370 |
pH+TS+ Cl–+SO42–+Ca2++Mg2++TN+TP+AK | 0.2046 |
pH+TS+HCO3–+Cl–+SO42–+Ca2++Mg2++TN+TP+AK | 0.1770 |
pH+TS+HCO3–+Cl–+SO42–+Ca2++Mg2++K++TN+TP+AK | 0.1352 |
pH+TS+HCO3–+Cl–+SO42–+Ca2++Mg2++K++TN+TP+AP+AK | 0.0859 |
pH+TS+HCO3–+Cl–+SO42–+Ca2++Mg2++K++OM+TN+TP+AP+AK | 0.0554 |
pH+TS+HCO3–+Cl–+SO42–+Ca2++Mg2++K++OM+TC+TN+TP+AP+AK | 0.0280 |
TS: total water soluble salt; OM: organic matte; TC: total organic carbon; TN: total nitrogen; TP: total phosphorus; AP: available phosphorous; AK: available potassium. |
表选项
3 讨论 截至目前为止,研究表明大多数种类的植物其内生细菌群落均以Proteobacteria门的菌群为主,比如Solanum lycopersicum[11]、Oryza sativa[12]、Arabidopsis thaliana[22]和Phragmites australis[23]。而我们发现部分种类的盐生植物,其内生细菌的群落结构并非如此,比如对于白花丹科的3种补血草,以及柽柳科的2种柽柳和琵琶柴,其内生细菌群落中占主导地位的细菌“门”均非Proteobacteria门,推测可能是由于这些盐生植物生理和生境的特殊性所致。细化到细菌“属”这一分类层次来看,盐生植物体内的一些菌属同样常见于其它植物体内,比如Pseudomonas属[9, 24-25],Enterobacter属[26]、Serratia属[26]。盐生植物体内存在一些可能对植物生长或逆境抗性具有促进作用的菌属,这些菌属包括Pantoea属[9, 27]、Azomonas属[28]、Brachybacterium属[6]、Brevibacterium属[6]、Bacillus属[29]、Arthrobacter属[29]和Enterobacter属[30-31]。此外,盐生植物的内生细菌群落中含有Kushneria属和Halomonas属,这2个菌属中的多数细菌具有较高耐盐性[8, 32-33]。盐生植物体内是否存在大量耐盐促生细菌,需要通过分离培养和回接等研究进一步验证。
多数研究表明生物和非生物因素均可影响植物内生细菌群落结构,例如植物基因型、水、温度和土壤等[25, 34]。本研究中所有盐生植物均生长在同一盐渍环境中,那么主要差异则是不同宿主的根际微环境和内部环境。植物的根部分泌物可改变根际土壤环境[35],通过这种根际效应塑造了根际土壤微生物群落[36],而植物的根际效应具有“植物种的特异性”[37]。植物根际细菌是植物内生细菌的主要来源,因此可能影响相同环境中的不同种植物内生细菌结构相异。比如,Sheng等[38]对生长在乌鲁木齐河源区的2种冰缘植物内生细菌群落结构进行研究,结果表明珠芽蓼(Polygonum viviparum)和火绒草(Leontopodium leontopodioides)内生细菌群落不同。本研究结果显示同一盐渍环境中,虽然不同种盐生植物内生细菌群落结构具有“植物种的特异性”,但是呈现“植物属的相似性”,即同一属不同种盐生植物内生细菌结构相似,推测其中一个重要原因可能是源于盐生植物根际效应存在差异。此外,本研究中盐生植物生长的盐渍土以硫酸盐为主,而土壤中Cl-是内生细菌群落变化的主要驱动因素。那么在以氯化物为主的盐渍环境中,SO42-是否会成为影响内生细菌群落结构的主要因素,这也是值得进一步研究的问题。
内生细菌群落结构的影响因素也可能来自于盐生植物的内环境。Hodkinson等[39]研究发现地衣产萘醌化合物可影响其相关细菌群落结构,导致酸杆菌门(Acidobacteria)占主导地位。盐生植物体内存在多种化合物,例如单宁、有机酸、可溶性糖和丙二醛等,尤其一些盐生植物以脯氨酸和甜菜碱作为渗透调节物质,其含量甚至高于甜菜。因此,内生细菌对盐生植物体内化学物质的敏感性,可能是造成细菌群落呈现“植物种的特异性”和“植物属的相似性”的原因之一。比如相同属的植物体内次生化合物种类和比例可能相似,从而选择更能适应这类内环境的细菌成为主要种群,造成同属的盐生植物内生细菌群落结构趋同。此外,在土壤和其它环境中,变形菌门(Proteobacteria)与酸杆菌门(Acidobacteria)的比率通常被认为是富营养(copiotrophic)和寡营养(oligotrophic)的指标[40-41]。本研究中,白刺属、梭梭属、盐节木属、盐穗木属和碱蓬属的盐生植物,它们根内主要菌群为变形菌门,推测可能是由于这几个属的盐生植物根内营养物质含量与比例有别于其它属的盐生植物所致。然而对于以上这些推测,还需要结合根际微生物和植物化学等方面的进一步研究去验证。
在样品采集时,我们发现补血草属中大叶补血草与其它2种补血草的根部形态存在明显差异。比如大叶补血草的主根直径达到其它2种补血草根直径的两倍以上,其质地较软并且深入土中,长度在30-40 cm 之间;然而耳叶补血草和黄花补血草主根相对纤细,质地坚硬,长度只有10-15 cm。Fierer等[42]认为在土壤中扎入很深的根,其接触到的微生物和浅层型的根不同,此外,根面的厚度和/或质地(如木质化程度,纤维含量)也可能会影响穿透侵入根部定殖细菌的种类。本研究聚类分析中,大叶补血草并未与其它2种补血草汇在一起(图 2),我们推测大叶补血草根形态和生理的特点可能是导致其内生细菌结构和另外2种补血草存在差异的主要原因之一。
盐生植物具有特殊的生理结构和调节途径以适应盐渍环境,然而抗盐机制是个非常复杂的系统,也许一部分盐胁迫适应性机制来自于盐生植物与体内细菌建立和维持有效共生体系的能力。目前,对于在内陆干旱区盐生植物内生细菌的相关研究却鲜见报道。我们的工作以多样性为出发点,首次采用高通量测序法对新疆阜康地区同一生境中16种盐生植物内生细菌群落结构进行调查,不仅发现内生细菌群落分布呈现宿主植物的种属特异性,而且明确根际土壤中Cl-含量是影响这些盐生植物内生细菌群落结构的重要驱动因素之一。现阶段的研究结果有助于认识盐生植物内生细菌微生态,可为进一步研究内生细菌在盐生植物生长中扮演的角色奠定基础。植物内生细菌的研究至今还处于起步阶段,其研究方法仍在不断完善。本研究中虽然同时使用3种方法对表面消毒结果进行检测,但依然存在植物组织表面附着的残留DNA或细胞未能被检测出的可能。在今后的植物内生细菌研究中,可采用常规检测方法和DAPI (4′,6-diamidino-2-phenylindole) 荧光染色法相结合以确保植物组织表面无残留的DNA或细胞,这样可使研究结果更加准确。
参考文献
[1] | Ma JB, Zhang MR, Xiao XL, You JJ, Wang JR, Wang T, Yao YN, Tian CY. Global transcriptome profiling of Salicornia europaea L. shoots under NaCl treatment.PLoS One, 2013, 8(6): e65877DOI:10.1371/journal.pone.0065877. |
[2] | Zilber-Rosenberg I, Rosenberg E. Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution.FEMS Microbiology Reviews, 2008, 32(5): 723–735DOI:10.1111/j.1574-6976.2008.00123.x. |
[3] | Suryanarayanand TS, Kumaresan V. Endophytic fungi of some halophytes from an estuarine mangrove forest.Mycological Research, 2000, 104(12): 1465–1467DOI:10.1017/S0953756200002859. |
[4] | Lucero ME, Unc A, Cooke P, Dowd S, Sun S L. Endophyte microbiome diversity in micropropagated Atriplex canescens and Atriplex torreyi var griffithsii.PLoS One, 2011, 6(3): e17693DOI:10.1371/journal.pone.0017693. |
[5] | Sun Y, Wang Q, Lu XD, Okane I, Kakishima M. Endophytic fungi associated with two Suaeda species growing in alkaline soil in China.Mycosphere, 2011, 2(3): 239–248. |
[6] | Jha B, Gontia I, Hartmann A. The roots of the halophyte Salicornia brachiata are a source of new halotolerant diazotrophic bacteria with plant growth-promoting potential.Plant and Soil, 2012, 356(1/2): 265–277. |
[7] | Qiu BS. Suaeda salsa L. of endophytic moderately halophilic bacteria.Microbiology China, 2012, 39(3): 428(in Chinese).邱并生. 盐地碱蓬内生中度嗜盐菌.微生物学通报, 2012, 39(3): 428. |
[8] | Cui CX, Dai MX, Xia ZJ. Phylogenetic diversity of endophytic moderately halophilic bacteria isolated from Suaeda salsa L.Microbiology China, 2010, 37(2): 204–210(in Chinese).崔春晓, 戴美学, 夏志洁. 盐地碱蓬内生中度嗜盐菌的分离与系统发育多样性分析.微生物学通报, 2010, 37(2): 204–210. |
[9] | Teng SS, Liu YP, Zhao L. Isolation, identification and characterization of ACC deaminase-containing endophytic bacteria from halophyte Suaeda salsa.Acta Microbiologica Sinica, 2010, 50(11): 1503–1509(in Chinese).滕松山, 刘艳萍, 赵蕾. 具ACC脱氨酶活性的碱蓬内生细菌的分离、鉴定及其生物学特性.微生物学报, 2010, 50(11): 1503–1509. |
[10] | Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, Tremblay J, Engelbrektson A, Kunin V, del Rio TG, Edgar RC, Eickhorst T, Ley RE, Hugenholtz P, Tringe SG, Dangl JL. Defining the core Arabidopsis thaliana root microbiome.Nature, 2012, 488(7409): 86–90DOI:10.1038/nature11237. |
[11] | Romero FM, Marina M, Pieckenstain FL. The communities of tomato (Solanum lycopersicum L.) leaf endophytic bacteria, analyzed by 16S-ribosomal RNA gene pyrosequencing.FEMS Microbiology Letters, 2014, 361(2): 187–194. |
[12] | Sun L, Qiu FB, Zhang XX, Dai X, Dong XZ, Song W. Endophytic bacterial diversity in rice (Oryza sativa L.) roots estimated by 16S rDNA sequence analysis.Microbial Ecology, 2008, 55(3): 415–424DOI:10.1007/s00248-007-9287-1. |
[13] | Hamady M, Knight R. Microbial community profiling for human microbiome projects: tools, techniques, and challenges.Genome Research, 2009, 19(7): 1141–1152DOI:10.1101/gr.085464.108. |
[14] | Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities.Applied and Environmental Microbiology, 2009, 75(23): 7537–7541DOI:10.1128/AEM.01541-09. |
[15] | Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Gl?ckner FO. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB.Nucleic Acids Research, 2007, 35(21): 7188–7196DOI:10.1093/nar/gkm864. |
[16] | Cole JR, Chai B, Farris RJ, Wang Q, Kulam SA, McGarrell DM, Garrity GM, Tiedje JM. The Ribosomal database project (RDP-II): sequences and tools for high-throughput rRNA analysis.Nucleic Acids Research, 2005, 33(Suppl 1): D294–D296. |
[17] | Shannon CE, Weaver W. The mathematical theory of communication.Urbana: The University of Illinois Press, 1963. |
[18] | Chao A, Lee SM. Estimating the number of classes via sample coverage.Journal of the American Statistical Association, 1992, 87(417): 210–217DOI:10.1080/01621459.1992.10475194. |
[19] | Chao A. Nonparametric estimation of the number of classes in a population.Scandinavian Journal of Statistics, 1984, 11(4): 265–270. |
[20] | Hamady M, Lozupone C, Knight R. Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data.The ISME Journal, 2010, 4(1): 17–27DOI:10.1038/ismej.2009.97. |
[21] | Van Etten EV. Multivariate analysis of ecological data using CANOCO.Austral Ecology, 2005, 30(4): 486–487DOI:10.1111/aec.2005.30.issue-4. |
[22] | Bodenhausen N, Horton MW, Bergelson J. Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana.PLoS One, 2013, 8(2): e56329DOI:10.1371/journal.pone.0056329. |
[23] | Li YH, Zhu JN, Zhai ZH, Zhang Q. Endophytic bacterial diversity in roots of Phragmites australis in constructed Beijing Cuihu Wetland (China).FEMS Microbiology Letters, 2010, 309(1): 84–93. |
[24] | Spiers AJ, Buckling A, Rainey PB. The causes of Pseudomonas diversity.Microbiology, 2000, 146(10): 2345–2350DOI:10.1099/00221287-146-10-2345. |
[25] | Shi YW, Yang HM, Zhang T, Sun J, Lou K. Illumina-based analysis of endophytic bacterial diversity and space-time dynamics in sugar beet on the north slope of Tianshan mountain.Applied Microbiology and Biotechnology, 2014, 98(14): 6375–6385DOI:10.1007/s00253-014-5720-9. |
[26] | Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN. Bacterial endophytes: recent developments and applications.FEMS Microbiology Letters, 2008, 278(1): 1–9DOI:10.1111/fml.2008.278.issue-1. |
[27] | Feng Y, Shen D, Song W. Rice endophyte Pantoea agglomerans YS19 promotes host plant growth and affects allocations of host photosynthates.Journal of Applied Microbiology, 2006, 100(5): 938–945DOI:10.1111/jam.2006.100.issue-5. |
[28] | Dobi?ová M, Abdallah MA, Kyslík P. Nitrogen Assimilation: Optimization of 15N-Labelled azoverdin production by Azomonas macrocytogenes ATCC 12334.Applied and Environmental Microbiology, 1994, 60(12): 4605–4607. |
[29] | Qin S, Zhang YJ, Yuan B, Xu PY, Xing K, Wang J, Jiang JH. Isolation of ACC deaminase-producing habitat-adapted symbiotic bacteria associated with halophyte Limonium sinense (Girard) Kuntze and evaluating their plant growth-promoting activity under salt stress.Plant and Soil, 2014, 374(1/2): 753–766. |
[30] | Hinton DM, Bacon CW. Enterobacter cloacae is an endophytic symbiont of corn.Mycopathologia, 1995, 129(2): 117–125DOI:10.1007/BF01103471. |
[31] | Ye B, Saito A, Minamisawa K. Effect of inoculation with anaerobic nitrogen-fixing consortium on salt tolerance of Miscanthus sinensis.Soil Science and Plant Nutrition, 2005, 51(2): 243–249DOI:10.1111/j.1747-0765.2005.tb00028.x. |
[32] | Arahal DR, Ludwig W, Schleifer KH, Ventosa A. Phylogeny of the family Halomonadaceae based on 23S and 16S rDNA sequence analyses.International Journal of Systematic and Evolutionary Microbiology, 2002, 52(1): 241–249DOI:10.1099/00207713-52-1-241. |
[33] | Zou ZZ, Wang GJ. Kushneria sinocarnis sp. nov., a moderately halophilic bacterium isolated from a Chinese traditional cured meat.International Journal of Systematic and Evolutionary Microbiology, 2010, 60(8): 1881–1886DOI:10.1099/ijs.0.013797-0. |
[34] | Martín-García J, Espiga E, Pando V, Diez JJ. Factors influencing endophytic communities in poplar plantations.Silva Fennica, 2011, 45(2): 169–180. |
[35] | Jones DL, Nguyen C, Finlay RD. Carbon flow in the rhizosphere: carbon trading at the soil-root interface.Plant and Soil, 2009, 321(1/2): 5–33. |
[36] | Bremer C, Braker G, Matthies D, Beierkuhnlein C, Conrad R. Plant presence and species combination, but not diversity, influence denitrifier activity and the composition of nirK-type denitrifier communities in grassland soil.FEMS Microbiology Ecology, 2009, 70(3): 377–387DOI:10.1111/fem.2009.70.issue-3. |
[37] | Micallef SA, Shiaris MP, Colón-Carmona A. Influence of Arabidopsis thaliana accessions on rhizobacterial communities and natural variation in root exudates.Journal of Experimental Botany, 2009, 60(6): 1729–1742DOI:10.1093/jxb/erp053. |
[38] | Sheng HM, Gao HS, Xue LG, Ding S, Song CL, Feng HY, An LZ. Analysis of the composition and characteristics of culturable endophytic bacteria within subnival plants of the Tianshan Mountains, Northwestern China.Current Microbiology, 2011, 62(3): 923–932DOI:10.1007/s00284-010-9800-5. |
[39] | Hodkinson BP, Gottel NR, Schadt CW, Lutzoni F. Photoautotrophic symbiont and geography are major factors affecting highly structured and diverse bacterial communities in the lichen microbiome.Environmental Microbiology, 2012, 14(1): 147–161DOI:10.1111/j.1462-2920.2011.02560.x. |
[40] | Fierer N, Bradford MA, Jackson RB. Toward an ecological classification of soil bacteria.Ecology, 2007, 88(6): 1354–1364DOI:10.1890/05-1839. |
[41] | Castro HF, Classen AT, Austin EE, Norby RJ, Schadt CW. Soil microbial community responses to multiple experimental climate change drivers.Applied and Environmental Microbiology, 2010, 76(4): 999–1007DOI:10.1128/AEM.02874-09. |
[42] | Fierer N, Schimel JP, Holden PA. Variations in microbial community composition through two soil depth profiles.Soil Biology and Biochemistry, 2003, 35(1): 167–176DOI:10.1016/S0038-0717(02)00251-1. |