俎千惠1, 2, 房焕1, 2, 周虎1, 张建伟1, 2, 彭新华1, 林先贵1, 冯有智1
1. 中国科学院南京土壤研究所, 土壤与农业可持续发展国家重点实验室, 江苏南京 210008;
2. 中国科学院大学研究生院, 北京 100049
收稿日期: 2015-05-04; 修回日期: 2015-06-25
资助课题: 中国科学院战略研究计划(XDB15020103, XDB15010103);国家自然科学基金(41271256);国家"973"计划(2014CB954500);土壤与农业可持续发展国家重点实验室优秀青年基金(212000009)
通讯作者: E-mail:yzfeng@issas.ac.cn
摘要: 【目的】 X射线断层扫描技术(X-ray micro-Computed Tomography, micro-CT)能够原位、无损伤的解析土壤物理结构,有望与土壤微生物研究结合,以有助于更好的了解土壤生态系统。由于土壤的高度异质性, X射线扫描和土壤微生物分析应为同一样品,但是关于X射线扫描后的土壤样品是否兼容土壤微生物分析却鲜有报道,即X射线扫描是否影响土壤微生物的活性及群落尚未明确。【方法】本研究采集我国华北地区潮土和亚热带红壤,利用平板计数、微量热技术和高通量测序技术研究了X射线扫描对可培养微生物数量、土壤微生物的代谢热和群落结构的影响。【结果】 X射线辐射显著降低了2种土壤中活体细菌的数量,同时微生物的代谢活性也发生改变;在分子水平上,基于细菌16S rRNA基因的高通量数据显示2种土壤的细菌多样性指数发生了变化,而其群落结构均无改变。【结论】 X射线断层扫描技术并不兼容土壤微生物功能的研究;但可兼容基于分子生物学的微生物群落结构分析。
关键词: X射线断层扫描土壤微生物微量热高通量测序
Effect of X-ray micro-computed tomography on the metabolic activity and diversity of soil microbial communities in two Chinese soils
Qianhui Zu1, 2, Huan Fang1, 2, Hu Zhou1, Jianwei Zhang1, 2, Xinhua Peng1, Xiangui Lin1, Youzhi Feng1
1. State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu Province, China;
2. Graduate University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:[Objective] X-ray micro-computed tomography(micro-CT) technology, as used in the in situ and nondestructive analysis of soil physical structure, provides the opportunity of associating soil physical and biological assays. Due to the high heterogeneity of the soil matrix, X-ray micro-CT scanning and soil microbial assays should be conducted on the same soil sample. This raises the question whether X-ray micro-CT influences microbial function and diversity of the sample soil to be analyzed.[Methods] To address this question, we used plate counting, microcalorimetry and pyrosequencing approaches to evaluate the effect of X-ray-at doses typically used in micro-CT-on soil microorganisms in a typical soil of North China Plain, Fluvo-aquic soil and in a typical soil of subtropical China, Ultisol soil, respectively.[Results] In both soils radiation decreased the number of viable soil bacteria and disturbed their thermogenic profiles. At DNA level, pyrosequencing revealed that alpha diversities of two soils biota were influenced in opposite ways, while beta diversity was not affected although the relative abundances of some guilds were changed.[Conclusion] These findings indicate that the metabolically active aspects of soil biota are not compatible with X-ray micro-CT; while the beta molecular diversity based on pyrosequencing could be compatible.
Key words: X-ray micro-computed tomographysoil microorganismsmicrocalorimetrypyrosequencing
土壤微生物是土壤生态系统的重要组成部分,对外界干扰敏感,甚至可以反映土壤生态系统健康情况。大量研究显示,外界干扰会改变土壤物理结构进而影响土壤微生物功能及多样性[1]。土壤物理结构对土壤微生物影响较大,例如在土壤物理结构的保护下,土壤微生物可利用的水、热、气[2]及有机质会发生变化[3]。对于耕地土壤,我们之前的研究表明长期施用化肥加有机肥(OM+NPK)与单施化肥(NPK)和对照(不施肥)相比能显著降低土壤空隙数量以及孔隙和相邻节点的毛细通道[4],提高红壤团聚体稳定性(土壤物理结构的重要指标[5])。潮土中也发现有类似现象[6]。与此同时,潮土[7, 8, 9]和红壤[10]中的微生物对长期不同施肥的响应也进行了相关报道。
由于土壤物理结构对土壤微生物有着较大的影响,两者之间的关联吸引了国内外众多科学家的关注[11]。土壤化学性质对土壤微生物群落结构[7, 8]以及功能[9]影响的报道已多见报告。与之相比,土壤物理结构对微生物影响的报道却相对较少。传统方法将土壤样品嵌入树脂研究土壤物理结构,与荧光原位杂交技术结合可以定位和识别土壤中微生物特征[12]。但是,此方法的缺点是耗费大量的劳动和时间,破坏样品,获得的是2D图片,且信息量有限[4],而且会影响土壤微生物特性。近年来X射线断层扫描技术已广泛应用于非损伤并快速的探测土壤物理结构,并获得大量的3D图片信息[4, 13, 14]。
X射线断层扫描技术的优点预示着其能与土壤微生物相关实验相结合。但是,由于土壤具有高度的异质性,在进行土壤物理结构及土壤微生物的相关研究时,研究对象应尽量为同一样品,即在理想状态下,进行X射线断层扫描和土壤微生物研究应为同一样品。因此,X射线扫描对土壤微生物功能和多样性是否产生影响,即X射线扫描是否兼容土壤微生物的研究?这是一个很重要的科学问题。目前仅有几篇相关报告,却有着不同的结论:Bouckaert等[15]通过测定土壤有机碳的矿化、土壤酶活和基于磷脂脂肪酸(PhospholipidFatty Acids,PLFA)的微生物结构,表明X射线扫描对土壤微生物的功能和群落结构无明显影响;与此相反,Fischer等[16]研究发现X射线扫描对土壤微生物多种胞外酶和群落结构的指纹图谱有明显影响。正是由于这些相反的结论,使我们更需要深入的研究X射线扫描对土壤微生物群落的影响,并揭示其机理。基于此,在本研究中我们选取华北平原的潮土和亚热带的红壤为研究对象,利用平板计数、微量热和高通量测序等技术,探究X射线扫描对土壤微生物功能和群落结构的影响。
1 材料和方法1.1 供试土壤信息采集2种土壤:沙壤土(潮土,Fluvo-aquic soil)和粘性土(红壤,Ultisol soil)。潮土来自于河北省中科院栾城农业生态试验站(37°53′N,114°41′E),土壤类型为始成土[17]。耕作方式为小麦玉米轮作。土壤有机质含量10.73g/kg,全氮1.17g/kg,全磷1.20g/kg,全钾18.6g/kg,pH 8.65。红壤来自于湖南省祁阳县红壤试验站(26°45′12′′N,111°52′12′′E)。土壤类型为铁铝始成土[18]。耕作方式为小麦-玉米轮作。土壤含有有机质15.95g/kg,全氮1.38g/kg,全磷1.71g/kg,全钾14.1 g/kg,pH 5.8。
采集耕作层土壤(0 - 10 cm)非根际土壤,过2 mm筛后,回填入聚氯乙烯管(PVC)中(内径为3 cm,高3 cm,厚0.1 cm)容重为1.3 g/cm3。保存于4 °C。
1.2 X射线扫描环刀样利用中国科学院南京土壤研究所的纳米工业显微CT (Phenix Nanotom S,GE,USA)扫描。设置3种处理:CK (不扫描)、LE (低能量扫描,80Kv,80μA,58min)、HE (高能量扫描,120kV,120μA,97min),每种处理3个重复,共18个样品。扫描参数均相同,分别为:扫描模式(Mode)选择0,分辨率(Resolution)为30μm,曝光时间(Timing)为1250ms,平均采集幅数(Average)为2,采集弃置幅数(Skip)为1,像素组合(Binning)为1×1,虚拟探测器(VSensor)为2,样品台水平方向从0到360°匀速旋转。扫描时,将低能量的6个样品同时置于样品台上进行扫描,保证条件一致,高能量也一样。扫描后样品过2 mm筛备用,用于分子实验的样品存放于-40 °C备用。
1.3 土壤中可培养细菌的数量采用稀释平板法测定土壤中可培养的细菌数[19]。每个处理各取10 g土壤样品,放入90 mL无菌水中,在旋转式摇床上200 r/min上充分震荡30min后取1 mL菌悬液注入9 mL无菌水中,连续稀释6次,取0.1mL菌悬液分别涂布用于计数细菌的牛肉膏蛋白胨培养基。于28 °C培养2 - 3 d后,细菌选取30 - 300个菌落的平板进行计数测定CFU。
1.4 微量热测定将待测样品于28 °C下预培养1 d,称取1.2 g土壤样品放入4 mL安瓿瓶中,添加0.2mL含有5.0 mg葡萄糖和5.0 mg硫酸铵溶液,以刺激和保证微生物生长;安瓿瓶用聚四氟乙烯封口,防止水分挥发和热量丢失;安瓿瓶置于微量热仪中28 °C培养,土壤微生物代谢活性以热功率值被计算机实时监控、记录,待信号终止即停止试验[9]。
1.5 土壤总DNA提取土壤总DNA采用FastDNA SPIN Kit for Soil (MP Biomedicals,Santa Ana,CA)试剂盒和Fast Prep TM FP120核酸提取仪提取。步骤简述如下,称取0.5g土壤样品,按照试剂盒说明书提取DNA,将提取到的DNA溶解于75 μL的ddH2O,保存于-20 °C。
1.6 高通量测序1.6.1 PCR扩增土壤微生物16S rRNA基因和焦磷酸测序:针对土壤样品,利用通用引物扩增约400bp的细菌16S rRNA基因,引物为:519F (CAGCMGCCGCGGTAATWC) 和907R (CCGTCAATTCMTTTRAGTTT)[20]。519F的3'端包括一个5bp的前端barcode以区分各个样品。PCR反应体系为50μL,反应条件为35个循环的95 °C 45 s,56 °C 45 s,72 °C 60 s,最后72 °C 7min。PCR产物纯化利用QIAquick PCR Purification kit (QIAGEN)试剂盒,浓度测定利用NanoDrop ND-1000 (Thermo Scientific,USA)。将PCR纯化产物等摩尔数混合,利用中国科学院南京土壤研究所分析测试中心Illumina Miseq测序仪上机分析。
1.6.2 高通量数据分析:细菌16S rRNA基因序列利用Quantitative Insights Into Microbial Ecology (QIIME) 1.7.0-dev pipeline [21] (http://www.qiime.org)进行分析;使用默认参数,保留高质量的序列(序列质量>25,长度为300bp),利用5bp的barcode进行分析。测序共获得290898条基因序列,其中潮土146738条序列,红壤有144160条序列,并且潮土每个样品的序列数在13122和18989之间,红壤每个样品的序列数在11594和19441之间。进一步利用qiime (http://www.arb-silva.de/download/archive/qiime/)进行分析,在97%的置信度下将每个样品中的16S rRNA基因序列进行分类,获得各类水平下的分类单元。在计算多样性指数时,我们以最少序列数/样品为标准[22],即潮土12010条序列/样品,红壤11510条序列/样品。利用QIIME加权分析其群落结构变化[23],利用PRIMER v6进行主成分分析(principal component analysis,PCA) [24]。
1.7 统计分析运用SPSS 13.0进行统计分析,并使用Tukey检验进行多重比较(P<0.05)。根据Segata[25]的方法进行最小判别效应分析(LDA)。
2 结果和分析2.1 平板计数平板计数结果如表1所示,2种土壤的变化趋势相似:对于潮土,高剂量的X射线显著降低了土壤中可培养细菌的数量,从147.7×105 CFU/g (FCtrl)下降到93.7×105 CFU/g (FH),低剂量的X射线有降低潮土中细菌数量的趋势,从147.7×105 CFU/g (FCtrl)下降到109.0×105 CFU/g (FL);对于红壤,X射线扫描显著降低了可培养细菌的数量,从154.0×105 CFU/g(RUtrl)分别下降到101.3×105 CFU/g (UL)和77.3×105 CFU/g (UH)。
2.2 土壤微生物的代谢变化利用微量热仪测定土壤微生物代谢热的变化,结果如表1和图1所示。X射线扫描对潮土和红壤的影响不同,对于潮土,Pmax (μW)(产热峰值)从880.7 μW (FCtrl)分别上升到1058.2 μW (FL)和1099.7 μW (FH),tmax (h)(产热达到峰值的时间)从5.3 h (FCtrl)均上升到7.2 h (FL,FH),k (h-1)(微生物生长率常数)0.320 h-1(FCtrl)分别上升到0.425 h-1 (FL)和0.438 h-1(FH),Q (J/g)(总产热量)从16.9 J/g (FCtrl)分别上升到17.7 J/g (FL)和18.1 J/g (FH)在X射线扫描后均显著升高;对于红壤,只有tmax (h)显著升高,从8.9 h (UCtrl)均上升到11.2 h (UL,UH)。
图1 微量热图 Figure1 Power-time curves recorded soil microcalorimetrically amended with glucose and ammonium sulphate. Abbreviations see footnote to Table 2. |
图选项 |
表1 平板计数和微量热特征值Table 1 Viable bacterial numbers and thermogenic profiles
Treatment | Bacteria/(105 CFU/g) | Pmax/(μW) | tmax/h | k/(h–1) | QT/(J/g) |
FCtrl | 147.7(22.6)a | 880.7(5.5)b | 5.3(0.15)b | 0.320(0.027)b | 16.9(0.29)b |
FL | 109.0(12.5)ab | 1058.2(52.7)a | 7.2(0.10)a | 0.425(0.007)a | 17.7(0.23)a |
FH | 93.7(20.4)b | 1099.7(24.5)a | 7.2(0.06)a | 0.438(0.005)a | 18.1(0.23)a |
UCtrl | 154.0(22.1)A | 490.6(44.2)A | 8.9(0.36)B | 0.314(0.029)A | 16.0(0.21)AB |
UL | 101.3(16.3)B | 500.3(33.9)A | 11.2(0.01)A | 0.341(0.013)A | 15.7(0.23)B |
UH | 77.3(12.0)B | 446.4(21.1)A | 11.2(0.32)A | 0.350(0.016)A | 16.2(0.17)A |
The significant differences among Fluvo-aquic and Ultisol soil are indicated by lower and upper cases, respectively. FCtrl, no X-ray scanning on Fluvo-aquic soil; FL, X-ray scanning with the low energy on Fluvo-aquic soil; FH, X-ray scanning with the high energy on Fluvo-aquic soil; UCtrl, no X-ray scanning on Ultisol soil; UL, X-ray scanning with the low energy on Ultisol soil; UH, X-ray scanning with the high energy on Ultisol soil. |
表选项
2.3 基于高通量测序的细菌群落结构高通量测序共获得潮土146738条序列,红壤144160条序列。在微生物分类门的水平上,潮土(FCtrl)中细菌群落主要包括:Proteobacteria (30.3%),Actinobacte-ria (17.5%),Acidobacteria (9.1%),Bacteroidetes (7.9%),Chloroflexi (6.2%),Planctomycetes (5.3%),Firmicutes (5.3%),Gemmatimonadetes (1.8%)和Nitrospirae (1.2%);红壤(UCtrl)中细菌群落主要包括:Actinobacteria (25.2%),Proteobacteria (24.6%),Firmicutes (10.9%),Acidobacteria (9.3%),Chloroflexi (7.3%),Planctomycetes (5.2%),Gemmatimonadete (2.2%),Cyanobacteria (1.4%),Bacteroidetes (1.0%)和Nitrospirae (0.6%)(图2)。
图2 细菌群落高通量测序累积图 Figure2 A 100% stacked column chart of the relative abundances of the dominant bacterial phyla derived from 16S rRNA genes in each soil sample of Fluvo-aquic or Ultisol soils. The value of each phylum percentage is the mean of triplicates. |
图选项 |
2.4 土壤中细菌的多样性指数分析潮土和红壤中细菌多样性指数Chao1和PD如表2所示。高剂量的X射线显著降低潮土Chao1和PD多样性指数,Chao1指数从26897.6下降到21221.4,PD指数从409.3下降到369.0,低剂量的X射线扫描后,潮土多样性指数Chao1和PD也有下降的趋势,分别下降到23442.5和388.6。而红壤的变化趋势相反,经过高剂量X射线扫描后Chao1和PD多样性指数均上升,从14272.3上升到18224.6以及从240.2上升到266.0;低剂量X射线扫描后Chao1和PD多样性指数也有上升的趋势,分别上升到16608.9和258.0。
表2 潮土和红壤多样性指数Table 2 Bacterial phylogenetic diversity indices in Fluvo-aquic and Ultisol soils
Treatment | Chao1 | PD |
FCtrl% | 26897.6(1911.0)a | 409.3(6.6)a |
FL | 23442.5(485.5)ab | 388.6(13.9)ab |
FH | 21221.4(1065.5)b | 369.0(8.1)b |
UCtrl# | 14272.3(1153.2)B | 240.2(8.7)B |
UL | 16608.9(1597.5)AB | 258.0(7.5)AB |
UH | 18224.6(927.2)A | 266.0(9.7)A |
The significant differences among Fluvo-aquic and Ultisol soils are indicated by lower and upper cases, respectively. %: The index was calculated using the subset of 12010 sequences per soil sample. #: The index was calculated using the subset of 11510 sequences per soil sample. |
表选项
2.5 主成分分析利用主成分分析(PCA)(图3)分析潮土和红壤样品中细菌群落结构的差异。从图中可以看出,潮土和红壤不同处理的样品都聚在一起,说明不同剂量的X射线对两种土壤中细菌的群落结构没有明显的影响。
图3 潮土(A)和红壤(B)PCA分析 Figure3 The bacterial community compositional structure in the Fluvo-aquic (A) and Ultisol (B) soils as indicated by a principal component analysis scaling plot of the weighted pairwise UniFrac community distances between different soil samples based on 12010 and 11510 sequences per soil sample, respectively. |
图选项 |
2.6 最小判别法分析利用高通量结果的OTU数据进行最小判别法分析(图4),从图4中可以看出,某些物种的丰度发生了变化。潮土在高剂量X射线(FH)扫描后与对照(FCtrl)相比Cyclobacteriaceae和Rhizobiaceae的丰度显著增加了(图4-A),而无论X射线剂量的高低Actinosynnemataceae都显著下降了。对于红壤而言,X射线扫描后Gammaproteob-acteria,Cyanobacteria,Chloroflexi和Planctomycetes的物种丰度均显著降低。
图4 潮土(A)和红壤(B)LDA分析 Figure4 Least discriminant analysis (LDA) effect size taxonomic cladogram comparing all Fluvo-aquic (A) and Ultisol (B) soils. Significantly discriminant taxon nodes are colored and branch areas are shaded according to the highest-ranked variety for that taxon. For each taxon detected, the corresponding node in the taxonomic cladogram is colored according to the highest-ranked group for that taxon. If the taxon is not significantly differentially represented between sample groups, the corresponding node is colored yellow. For the complete list of discriminate taxa and ranks used to generate this cladogram, see supplementary information. |
图选项 |
3 讨论目前,关于X射线对土壤微生物群落结构影响的研究很少。我们选择了2篇具有代表性文章[15, 16]与本研究中X射线的剂量、参数及微生物研究方法进行对比:他们实验中Micro-CT X射线的电压、电流、功率和时间分别在80 - 160 kV,80 - 1000μA,6.4 - 160 W和45 - 120min的范围内,本研究的值处于平均水平:CK (不扫描)、LE (低能量扫描,80kV,80 μA,58 min)、HE (高能量扫描,120kV,120 μA,97 min)。低剂量X射线适用于植物研究,高剂量X射线适用于土壤研究。对于微生物功能和多样性,Bouckaert等[15]研究了土壤酶活和PLFA,Fischer等[16]研究了胞外酶潜在活性(Potential Extracellular Enzymatic Activities,PEEA)和末端限制性长度多态性(Terminal Restriction Fragment Length Polymorphism,T-RFLP),本研究则通过高敏感的微量热和高分辨率的高通量测序技术结合平板计数法进行表征。我们的研究结果和前者存在差异,其根本原因正如Fischer等[16]所说,源于研究方法的不同,因为灵敏度和分辨率在微生物研究中十分重要。
研究结果显示,土壤微生物代谢活性不兼容于X射线micro-CT技术。如表1和图1所示,潮土中微生物代谢热值Pmax、tmax、k和Q在X射线扫描后均显著变化。众所周知,X射线辐射能够杀死微生物,所以与对照相比,经过X射线扫描后,潮土中可培养细菌的数量显著下降。Barros等[26]研究显示,微生物数量的降低,伴随着tmax的升高,可能是因为数量降低的微生物对葡萄糖和硫酸铵刺激的响应会延迟。因此在本研究中我们发现经X射线辐射后,tmax值升高。同时,Pmax和Q上升可能是由于被X射线杀死的微生物残体有机质的释放所致,这与Fischer等[16]的研究结果一致,即在X射线辐射后7 d,微生物的生物量C和N上升。与潮土相一致,红壤在经过X射线扫描后tmax显著上升,也是活体微生物数量下降所致。微生物微量热的结果与Bouckaert等[15]和Fischer等[16]酶活的研究结果相反,他们发现X射线对土壤微生物酶活没有影响。两者之间的矛盾可能是由于微量热与酶活表征的土壤微生物特性不同所致,微量热描述的是土壤全部微生物在代谢过程中热量的耗散,而土壤酶活不仅由微生物决定还与其他方面相关,例如植物根系。因此,经过X射线扫描后短期内,土壤微生物酶活变化不明显。
基于DNA水平,本研究发现X射线扫描降低了潮土α多样性指数(PD,Chao1)(表2),这与可培养细菌数量下降是一致的。经过X射线扫描不仅会降低微生物活性,而且利用高通量测序技术发现短期内对土壤微生物DNA也有影响,这与之前的认知有所不同,可能源自高通量测序技术的高灵敏性。更有甚者,红壤微生物多样性指数在X射线扫描后还增加。红壤中富含纳米级的铁氧化物[27],我们推测这些氧化物在经过X射线扫描后可能会增加土壤微生物的变异速率。我们在以前的研究就发现E. coli在富含纳米级氧化铁的环境中有基因突变的现象[28];此外,纳米粒子对高通量测序中PCR效率也存在影响[29]。这些推论还需要进一步的认证。
虽然土壤微生物α多样性指数受到X射线扫描的影响,但是基于高通量测序数据的PCA结果显示,X射线对土壤微生物群落结构没有影响(图3)。该结果与Bouckaert等[15]的研究结论一致。值得注意的是虽然整体细菌群落结构没有差异,但是部分物种的相对丰度还是存在变化。LDA的结果显示X射线扫描改变一些物种的相对丰度(图4)。因此利用某些技术研究特定微生物群对X射线扫描的响应时需要谨慎。例如指纹图谱只能靶标部分微生物,因此Fischer等[16]利用指纹图谱分析时就得出发现部分微生物群落结构发生分异,因此得出X射线辐射影响土壤微生物群落结构的结论。
此外,土壤特性可能会影响土壤微生物研究和X射线扫描技术的兼容性。在本研究中,2种类型土壤中可培养细菌的数量在X射线扫描后均下降,但是其代谢热和多样性指数变化不同(表2)。造成上述差异的原因是由于2种土壤本身具有不同的化学特性。因此,在耦合X射线扫描技术和土壤微生物研究时,还要特别注意土壤样品的本身特性。
参考文献
[1] | Smith AP, Marin-Spiotta E, de Graaff MA, Balser TC. Microbial community structure varies across soil organic matter aggregate pools during tropical land cover change. Soil Biology & Biochemistry, 2014, 77:292-303. |
[2] | van Veen JA, Kuikman PJ. Soil structural aspects of decomposition of organic matter by micro-organisms. Biogeochemistry, 1990, 11(3):213-233. |
[3] | Strong DT, De Wever H, Merckx R, Recous S. Spatial location of carbon decomposition in the soil pore system. European Journal of Soil Science, 2004, 55(4):739-750. |
[4] | Zhou H, Peng XH, Perfect E, Xiao TQ, Peng GY. Effects of organic and inorganic fertilization on soil aggregation in an Ultisol as characterized by synchrotron based X-ray microcomputed tomography. Geoderma, 2013, 195-196:23-30. |
[5] | Feeney DS, Crawford JW, Daniell T, Hallett PD, Nunan N, Ritz K, Rivers M, Young IM. Three-dimensional microorganization of the soil-root-microbe system. Microbial Ecology, 2006, 52(1):151-158. |
[6] | Yu HY, Ding WX, Luo JF, Geng RL, Ghani A, Cai ZC. Effects of long-term compost and fertilizer application on stability of aggregate-associated organic carbon in an intensively cultivated sandy loam soil. Biology and Fertility of Soils, 2012, 48(3):325-336. |
[7] | Lin XG, Feng YZ, Zhang HY, Chen RR, Wang JH, Zhang JB, Chu HY. Long-term balanced fertilization decreases arbuscular mycorrhizal fungal diversity in an arable soil in North China revealed by 454 pyrosequencing. Environmental Science & Technology, 2012, 46(11):5764-5771. |
[8] | Feng YZ, Chen RR, Hu JL, Zhao F, Wang JH, Chu HY, Zhang JB, Dolfing J, Lin XG. Bacillus asahii comes to the fore in organic manure fertilized alkaline soils. Soil Biology & Biochemistry, 2015, 81:186-194. |
[9] | Zheng SX, Hu JL, Chen K, Yao J, Yu ZN, Lin XG. Soil microbial activity measured by microcalorimetry in response to long-term fertilization regimes and available phosphorous on heat evolution. Soil Biology & Biochemistry, 2009, 41(10):2094-2099. |
[10] | Liu M, Li ZP, Zhai XC. Peanut straw decomposition products promoted by chemical additives and their effect on enzymatic activity and microbial functional diversity in red soil. Compost Science & Utilization, 2013, 21(2):76-86. |
[11] | Totsche KU, Rennert T, Gerzabek MH, Kögel-Knabner I, Smalla K, Spiteller M, Vogel HJ. Biogeochemical interfaces in soil:the interdisciplinary challenge for soil science. Journal of Plant Nutrition and Soil Science, 2010, 173(1):88-99. |
[12] | Eickhorst T, Tippkotter R. Detection of microorganisms in undisturbed soil by combining fluorescence in situ hybridization(FISH) and micropedological methods. Soil Biology & Biochemistry, 2008, 40(6):1284-1293. |
[13] | Young IM, Crawford JW, Rappoldt C. New methods and models for characterising structural heterogeneity of soil. Soil & Tillage Research, 2001, 61(1/2):33-45. |
[14] | Munkholm LJ, Heck RJ, Deen B. Soil pore characteristics assessed from X-ray micro-CT derived images and correlations to soil friability. Geoderma, 2012, 181-182:22-29. |
[15] | Bouckaert L, Van Loo D, Ameloot N, Buchan D, Van Hoorebeke L, Sleutel S. Compatibility of X-ray microcomputed tomography with soil biological experiments. Soil Biology & Biochemistry, 2013, 56:10-12. |
[16] | Fischer D, Pagenkemper S, Nellesen J, Peth S, Horn R, Schloter M. Influence of non-invasive X-ray computed tomography(XRCT) on the microbial community structure and function in soil. Journal of Microbiological Methods, 2013, 93(2):121-123. |
[17] | 龚子同. 中国土壤系统分类. 北京:科学出版社, 1999. |
[18] | Zhai LM, Liu HB, Zhang JZ, Huang J, Wang BR. Long-term application of organic manure and mineral fertilizer on N2O and CO2 emissions in a red soil from cultivated maize-wheat rotation in China. Agricultural Sciences in China, 2011, 10(11):1748-1757. |
[19] | Foght J, Aislabie J. Enumeration of soil microorganisms//Soil Biology:Monitoring and Assessing Soil Bioremediation. Berlin Heidelberg:Springer, 2005, 5:261-280. |
[20] | Feng YZ, Yu YJ, Tang HY, Zu QH, Zhu JG, Lin XG. The contrasting responses of soil microorganisms in two rice cultivars to elevated ground-level ozone. Environmental Pollution, 2015, 197:195-202. |
[21] | Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R. QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 2010, 7(5):335-336. |
[22] | Shaw AK, Halpern AL, Beeson K, Tran B, Venter JC, Martiny JBH. It's all relative:ranking the diversity of aquatic bacterial communities. Environmental Microbiology, 2008, 10(9):2200-2210. |
[23] | Lozupone C, Knight R. UniFrac:a new phylogenetic method for comparing microbial communities. Applied and Environmental Microbiology, 2005, 71(12):8228-8235. |
[24] | Clarke KR, Warwick RM. A further biodiversity index applicable to species lists:variation in taxonomic distinctness. Marine Ecology-Progress Series, 2001, 216:265-278. |
[25] | Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C. Metagenomic biomarker discovery and explanation. Genome Biology, 2011, 12(6):R60. |
[26] | Barros N, Feijoó S, Balsa R. Comparative study of the microbial activity in different soils by the microcalorimetric method. Thermochimica Acta, 1997, 296(1/2):53-58. |
[27] | Zhang B, Horn R. Mechanisms of aggregate stabilization in Ultisols from subtropical China. Geoderma, 2001, 99(1/2):123-145. |
[28] | He SY, Feng YZ, Gu N, Zhang Y, Lin XG. The effect of γ-Fe2O3 nanoparticles on Escherichia coli genome. Environmental Pollution, 2011, 159(12):3468-3473. |
[29] | Li HK, Huang JH, Lv JH, An HJ, Zhang XD, Zhang ZZ, Fan CH, Hu J. Nanoparticle PCR:nanogold-assisted PCR with enhanced specificity. Angewandte Chemie-International Edition, 2005, 44(32):5100-5103. |