徐鈜绣, 姜丽晶, 李少能, 钟添华, 赖其良, 邵宗泽
国家海洋局第三海洋研究所, 海洋生物遗传资源重点实验室, 福建厦门 361005
收稿日期: 2015-04-06; 修回日期: 2015-05-11
资助课题: 国家"973计划"(2012CB417300);中国大洋专项(DY125-15-R-01);国家微生物资源平台项目(NIMR-2014-9)
通讯作者: Tel/Fax:+86-592-2195236;E-mail:shaozz@163.com
摘要: 【目的】探索南大西洋热液环境中的硫氧化细菌多样性并研究其硫氧化特性。【方法】通过富集培养和分离纯化获得硫氧化细菌,利用变性梯度凝胶电泳(DGGE)分析富集菌群组成结构,采用离子色谱法对获得的硫氧化细菌硫氧化特性进行检测。【结果】从南大西洋深海环境样品中共分离到48株菌,分属于alpha-Proteobacteria(28株, 58.3%)、Actinobacteria(11株, 22.9%)和gama-Proteobacteria(9株,18.8%)共3个门,其中Thalassospira、Martelella和Microbacterium为优势属。DGGE结果表明深海热液环境样品中微生物多样性丰富且不同站位存在差异。硫氧化特性研究结果表明,约60%的分离菌株具有硫氧化能力,可以氧化S2O32-生成SO42-。获得一株硫氧化能力较强的潜在新种L6M1-5,在实验条件下可高效氧化S2O32-,最大氧化速率可达0.56 mmol/(L·h)。【结论】南大西洋深海热液环境中可培养硫氧化细菌多样性丰富,为研究热液环境中的硫循环过程提供了实验材料和理论参考;同时高效硫氧化菌的获得,为工业化含硫废水的处理提供了良好的菌种资源。
关键词: 深海热液区硫氧化菌多样性硫氧化特性
Diversity of culturable sulfur-oxidizing bacteria in deep-sea hydrothermal vent environments of the South Atlantic
Hongxiu Xu, Lijing Jiang, Shaoneng Li, Tianhua Zhong, Qiliang Lai, Zongze Shao
Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, Fujian Province, China
Abstract:[Objective] To investigate the diversity of culturable sulfur-oxidizing bacteria in hydrothermal vent environments of the South Atlantic, and analyze their characteristics of sulfur oxidation.[Methods] We enriched and isolated sulfur-oxidizing bacteria from hydrothermal vent samples collected from the South Atlantic. The microbial diversity in enrichment cultures was analyzed using the Denatural Gradient Gel Electrophoresis method. Sulfur-oxidizing characteristics of the isolates was further studied by using ion chromatography.[Results] A total of 48 isolates were obtained from the deep-sea hydrothermal vent samples, which belonged to 23 genera and mainly grouped into alphaProteobacteria(58.3%), Actinobacteria(22.9%) and gama-Proteobacteria(18.8%). Among them, the genus Thalassospira, Martelella and Microbacterium were dominant. About 60% of the isolates exibited sulfur-oxidizing ability and strain L6M1-5 had a higher sulfur oxidation rate by comparison analysis.[Conclusion] The diversity of sulfur-oxidizing bacteria in hydrothermal environments of the South Atlantic was reported for the first time based on culture-dependent methods. The result will help understand the biogechemical process of sulfur compounds in the deep-sea hydrothermal environments.
Key words: deep-sea hydrothermal environmentsulfur-oxidizing bacteriadiversitysulfur-oxidizing charactenitics
深海热液区是地球上最极端的环境之一,其特征是黑暗、高压以及陡峭的物理和化学梯度,自1979年被发现后,热液区地质特征和生物群落就一直是研究的热点[1]。热液口喷发出来的高温流体含高浓度的硫化物,当与周围含氧海水混合时会产生硫代硫酸盐、多聚硫化物和硫等中度还原性的含硫物质[2]。已有研究表明在深海热液区分布着大量的硫氧化微生物,它们自由生长或者与各种各样的无脊椎动物形成共生体,可将还原性硫化合物氧化生成硫酸盐[3]。热动力学模型研究表明微生物主导的硫氧化作用是深海热液生态系统中主要能量来源,微生物通过硫氧化过程调节能量的转移,使地热能流向更高的营养级,供其他生物利用,因此热液喷口成为深海最具生产力的生态系统[4, 5]。
近年来,对多个深海热液环境中自由生长和共生体内微生物群落的分子生态学研究表明,热液区硫氧化细菌系统发育多样性非常高,已报道的有alpha-Proteobacteria中的Rosebacter类群,gama-Proteobacteria中的Thiomicrospira、Halothiobacillus和Beggiatoa以及epsilon-Proteobacteria中的Sulfurimonas、Sulfurovum和Acrobacter等类群[6, 7, 8]。硫氧化微生物氧化机制也有多面性,报道最多的是sox多酶复合体途径,该途径一般被分为两种类型:PSO途径和S4I途径,两种作用途径由于参与基因不同表现出的氧化能力、氧化产物和pH变化等性质也不同[2, 9],此外还有反向硫酸盐还原途径[2]。研究硫氧化微生物的氧化途径对于了解深海热液区生态系统和深海中的硫循环有重要意义[8]。
南大西洋热液区是我国近年来在大洋科考中新发现的一个热液区[10]。关于南大西洋硫氧化微生物资源多样性国内还没有报道。本研究首次通过实验室富集培养,结合DGGE技术,对南大西洋深海热液环境中的硫氧化微生物多样性进行了研究,获得了多株可培养的硫氧化细菌,并对这些硫氧化细菌的理化特性进行了初步研究,旨为研究深海硫氧化细菌的硫氧化机制及热液环境中的硫循环过程提供实验材料和理论参考。
1 材料和方法1.1 材料1.1.1 样品来源:本研究所用的10个样品由2011 年大洋第22航次第三航段“大洋一号”考察船在南大西洋中脊用电视抓斗获得,主要为深海热液硫化物及其附近的沉积物样品。相关信息见表1。
表1 深海热液区样品信息Table 1 The information of environmental samples from deep-sea hydrothermal fields
No. | Site | Longitude/°W | Latitude/°S | Depth/m | Date | Sample type |
1 | 22III-SMAR-S010-TVG05 | 13.85 | 26.01 | 2562 | 2011-3 | Deep-sea sediment |
2 | 22 III-SMAR-S012-TVG06 | 13.85 | 26.02 | 2545 | 2011-3 | Deep-sea sediment |
3 | 22 III-SMAR-S018-TVG10 | 13.31 | 24.54 | 2635 | 2011-3 | Deep-sea sediment |
4 | 22IV-S3-TVG3 | 13.35 | 15.16 | 2875 | 2011-4 | Deep-sea sulfide |
5 | 22 IV-S1-TVG1 | 13.66 | 14.25 | 2246 | 2011-4 | Deep-sea sediment |
6 | 22 IV-S6-TVG4 | 13.34 | 15.14 | 2835 | 2011-4 | Deep-sea sediment |
7 | 22 IV-S8-TVG6 | 13.35 | 15.16 | 2737 | 2011-4 | Deep-sea sulfide |
8 | 22 IV-S16-TVG13 | 13.20 | 24.14 | 2680 | 2011-5 | Deep-sea sediment |
9 | 22 IV-S21-TVG17 | 11.42 | 20.89 | 2076 | 2011-5 | Deep-sea sediment |
10 | 22 IV-S35-TVG28 | 11.92 | 19.41 | 2590 | 2011-5 | Deep-sea sediment |
表选项
1.1.2 培养基:(1) M1培养基(DSM142):NaCl 25g,(NH4)2SO4 1 g,MgSO4·7H2O 1.5 g,CaCl2 · 2H2O 0.42 g,酚红 0.3 mg,微量元素(DSM141,下同) 10 mL,1 L蒸馏水;用HCl/NaOH调pH至7,121°C高压蒸汽灭菌20 min,加入过滤除菌的K2HPO4 (终浓度0.5 g/L),Na2S2O3 · 5 H2O (终浓度5 g/L)及Vitamin B12 (终浓度15 μg/L),最后用无菌Na2CO3溶液(0.4%,W/V)调节pH至7;(2) M3培养基[11];(3) 216L培养基[12] (4) 硫氧化功能验证培养基(MMT):NaCl 30 g,NH4Cl 0.5 g,CaCl2 · 2H2O 0.1 g,K2HPO4 0.5 g,MgCl2 0.4 g,微量元素1 mL,乙酸钠0.8 g,酵母膏 0.2 g,用HCl/NaOH调pH至7,121 °C高压蒸汽灭菌20 min。相对应的平板培养基中琼脂粉浓度为15 g/L。
1.1.3 主要试剂及仪器:基因组提取试剂盒和胶回收试剂盒均购自AXYGEN公司;PCR相关试剂购自TaKaRa Biotechnology公司,其他常规试剂主要购自上海生物工程技术有限公司。ICS3000离子色谱仪(配电导检测器、抑制器和AS40自动进样器)、Chromeleon6 工作站、IonPacAS11-HC (4 mm × 250 mm)分析柱、IonPacAS11 (4 mm × 50 mm)预柱和ASRS 300 (4 mm)抑制器均购自美国Dionex公司;PCR扩增仪(Eppendorf,美国);Alpha Innotech凝胶成像仪(San Leandro,美国);Decode System电泳仪(Bio-Rad,美国);光学显微镜(OLYMPUS,日本);Bioscreen全自动生长曲线分析仪(Oy Growth Curves Ab Ltd,芬兰)。
1.2 硫氧化细菌的富集和筛选取约1 g样品分别加入50 mL M1、M3培养基中,在28 °C、180 r/min进行摇瓶富集培养,每隔2 d取样,在显微镜下观察富集结果。20 d后按5%接种量转接继续富集培养,10 d后将二次富集物涂布于M1、M3和216L平板培养基。培养10d后,挑取形态有差异的单菌落,在相应的培养基中划线分离纯化3次,得到纯菌。
1.3 细菌16S rRNA基因序列测定与系统发育分析用试剂盒提取菌株基因组,方法见说明书。参照Liu等[13]的方法扩增16S rRNA基因(约1.5 kb),PCR产物经1.5%琼脂糖凝胶电泳检测后,交由Invitrogen (广州)公司测序。测序结果经剪接得到有效长度约800 bp,与EzTaxon (http://www. eztaxon.org/)[14]和NCBI (http://www.ncbi.nlm.nih. gov/BLAST)数据库做BLAST分析。将目的序列及近缘菌株的16S rRNA基因序列用MEGA 5.0构建系统发育树,采用邻位加入法(Neighbor-Joining),Kimura双参数模型(Kimura 2-parameter model)[15],1000次自展(Bootstrap)来评估所建进化树的准确性。
1.4 菌群16S rRNA基因序列的V3区PCR-DGGE分析用试剂盒提取富集菌群基因组,方法见说明书。扩增16S rRNA基因序列的V3区,采用引物V3F(5′-CGCCCGCCGCGCGCGGCGGGCGGGGCGGGGGCACGGGGGGCCTACGGGAGGCAGCAG-3′)和V3R(5′-ATTACCGCGGCTGCTGG-3′)。PCR反应体系(50 μL):2×PCR Mix 25 μL,V3F(10μmol/L) 1 μL,V3R(10 μmol/L)1 μL,Template(10-100 ng/μL) 1 μL,ddw 22 μL。采用touch-down PCR扩增程序:94 °C 4 min;94 °C 30s,65-0.5 °C 30 s,72 °C 1 min,20个循环;94 °C 15 s,55 °C 30 s,72 °C 30 s,25个循环;72 °C,15 min;其中65-0.5°C表示每个循环递减0.5°C直至55°C。PCR产物经2%琼脂糖凝胶电泳检测,纯化后进行DGGE电泳[16](变性剂浓度改为30%–60%),对主要亮带切胶回收、克隆测序及比对分析。
1.5 菌株硫氧化途径及硫氧化能力的初步检测采用MMT培养基,以Na2S2O3作为硫源,将分离得到的菌株接种到含酚红指示剂培养基中,置于28 °C条件下培养10 d。硫氧化细菌由于氧化途径的差异对培养基pH的影响不同[17],若将底物直接氧化生成硫酸盐会使培养基pH下降,培养基颜色变黄;若产生中间代谢物如多聚硫化物会使培养基pH升高,培养基颜色变红。
1.6 硫氧化菌氧化特性的研究将分离到的一株硫氧化效果较明显的菌株Ponticoccus sp. L6M1-5与本实验从其他海洋环境分离的硫氧化菌Defluviimonas indicum 20V17[18],Thioclava indica DT23-4[12]和Thioclava atlantica 13D2W-2[19]一起进行了硫氧特性的研究。这四株菌都属于Rhodobacteraceae类群,是alpha-Proteobacteria中一个分类单元,该分类单元中有许多种属具有硫氧化功能[20]。
1.6.1 最适含硫底物检测:采用MMT培养基,分别以5 mmol/L Na2S、5 mmol/L Na2S2O3和0.5% W/V单质S为唯一添加硫源,将待测菌株接种至培养基中置于28 °C培养3 d,每种硫源设3个平行试验。若菌株完全氧化则会产生SO42-,若不完全氧化则会生成SO32-等其他中间代谢物,实验过程中检测菌液OD600值、pH值和产物生成情况。
1.6.2 最适底物浓度的测定:采用MMT培养基,以Na2S2O3作为硫源,并设定不同的浓度:5、10、15和20 mmol/L,对于耐受较高浓度Na2S2O3的菌株则增加了30 mmol/L和40 mmol/L两个测试浓度。将菌株接种到培养基中置于28 °C培养3 d,每个测试浓度设3个平行试验。检测菌液OD600 值、pH值、底物含量和产物含量。
1.6.3 硫氧化速率的测定:采用MMT培养基,以Na2S2O3为底物,浓度设定为上述实验测定的各菌株最适浓度。将待测菌株接种到培养基中置于28°C培养3 d,每株菌均设3个平行试验。定时取样并测定菌液OD600值、pH值、S2O32-含量和SO42- 含量并计算单位时间内S2O32-和SO42-的含量变化。
S2O32-、SO32-和SO42-的检测采用离子色谱法,样品预处理及测定方法参照相关文献[21, 22],测色谱条件:淋洗液:40 mmol/L NaOH,流速:1 mL/min,抑制器:自动再生抑制模式,抑制电流:100 mA,电导检测器检测,电导池温度:35°C,柱温为30 °C,柱压维持在9–10 Mpa,进样量为25 μL,样品保留时间为30 min。
2 结果和分析2.1 菌株富集与分离纯化结果采用M1和M3培养基,在28 °C条件下富集30d,除了4号站位,其余9个站位样品得到成功富集,共获得18份富集物。对分离的菌株进行16S rRNA基因扩增、测序和BLASTn比对分析,用MEGA 5.0软件进行聚类分析并构建系统发育树。结果 (表2,图1) 表明从南大西洋深海样品中共分离到3个门23个属的48株菌,主要为alpha-Proteobacteria (28株,58.3%)的Thalassospira、Martelella、Citreicella、Labrenzia和Sphingopyxis属,其次为Actinobacteria12 (11株,22.9%)的Microbacterium、Gordonia和Nocardioides属,gama-Proteobacteria (9株,18.8%)的Marinobacter、Pseudomonas和Thiomicrospira属。从进化树的拓补结构可以明显看出alpha-Proteobacteria类群有4个独立分支,在分类水平上为4个不同的目,分别是Rhodospirill-ales、Rhodobacterales、Sphingomonadales和Rhizobiales。所有分离菌株的16S rRNA基因序列与已发表的模式菌株的相似性在96.6%–100%,其中菌株L6M1-5和L9M3-7的16S rRNA基因序列与对应模式菌株的相似度较低,分别为96.6%和97.9%,可能是潜在的新种[23]。这些菌种已经保藏到中国海洋微生物菌种保藏管理中心(MCCC),菌种库藏编号见表2。
表2 深海热液区样品信息Table 2 The information of environmental samples from deep-sea hydrothermal fields
Site | Strains (MCCC No.) | Closest strains in GenBank (Accession No.) | Similarity/% | GenBank Accession No. |
1 | L1M3-1 | Erythrobacter citreus RE35F/1T (AF118020) | 99.6 | KJ956971 |
1 | L1M3-4(1A04245) | Microbacterium flavescens IFO 15039T (AB004716) | 99.3 | KJ956972 |
2 | L2M1-1(1A07424) | Pseudomonas stutzeri ATCC 17588T (CP002881) | 99.7 | KJ956932 |
2 | L2M1-2 | Microbacterium flavescens IFO 15039T (AB004716) | 99.3 | KJ956933 |
2 | L2M3-3(1A07742) | Pseudonocardia tropica YIM 61452T (GQ906587) | 100 | KJ956974 |
2 | L2M3-4(1A04245) | Citromicrobium bathyomarinum JF-1T (Y16267) | 99.9 | KJ956975 |
3 | L3M3-1(1A04215) | Marinobacter excellens KMM 3809T (AY180101) | 99.3 | KJ956956 |
3 | L3M3-2(1A07744) | Martelella mediterranea MACL11T (AY649762) | 100 | KJ956976 |
3 | L3M3-3(1A04226) | Nitratireductor aquimarinus CL-SC21T (HQ176467) | 100 | KJ956957 |
3 | L3M3-4(1A07249) | Gordonia bronchialis DSM 43247T (CP001802) | 99.4 | KJ956977 |
5 | L5M1-1(1A07250) | Citromicrobium bathyomarinum JF-1T (Y16267) | 99.9 | KJ956934 |
5 | L5M1-2(1A07745) | Microbacterium paraoxydans CF36T (AJ491806) | 100 | KJ956935 |
5 | L5M3-1(1A07747) | Thalassospira xianhensis P-4T (EU017546) | 99.8 | KJ956978 |
5 | L5M3-2(1A07748) | Nocardioides marinus CL-DD14T (DQ401093) | 99.9 | KJ956979 |
6 | L6M1-1(1A07251) | Citreicella thiooxidans CHLG 1T (AY639887) | 99.8 | KJ956936 |
6 | L6M1-2(1A07749) | Thalassospira xianhensis P-4T (EU017546) | 99.7 | KJ956937 |
6 | L6M1-4(1A07750) | Labrenzia aggregata IAM 12614T (AAUW01000037) | 100 | KJ956938 |
6 | L6M1-5(1A07531) | Ponticoccus litoralis CL-GR66T (EF211829) | 96.6 | KJ950370 |
6 | L6M3-1(1A07754) | Martelella mediterranea MACL11T (AY649762) | 100 | KJ956980 |
6 | L6M3-3(1A07755) | Gordonia bronchialis DSM 43247T (CP001802) | 99.6 | KJ956981 |
6 | L6M3-4(1A07252) | Labrenzia aggregata IAM 12614T (AAUW01000037) | 98.6 | KJ956982 |
7 | L7M3-1(1A07426) | Pseudomonas stutzeri ATCC 17588T (CP002881) | 99.2 | KJ956983 |
8 | L8M1-1(1A07427) | Citreicella thiooxidans CHLG 1T (AY639887) | 99.8 | KJ956939 |
8 | L8M1-2(1A07440) | Thalassospira tepidiphila 1-1BT (AB265822) | 99.1 | KJ956940 |
8 | L8M1-3(1A07441) | Paracoccus homiensis DD-R11T (DQ342239) | 99.4 | KJ956941 |
8 | L8M1-5(1A07442) | Thalassospira tepidiphila 1-1BT (AB265822) | 100 | KJ956943 |
8 | L8M1-4 | Halomonas boliviensis LC1T (AY245449) | 99.3 | KJ956942 |
8 | L8M3-1(1A07542) | Gordonia bronchialis DSM 43247T (CP001802) | 99.4 | KJ956984 |
8 | L8M3-3(1A07532) | Martelella mediterranea MACL11T (AY649762) | 100 | KJ956985 |
8 | L8M3-4 | Thiomicrospira thermophila I78T (AB166731) | 100 | KJ956986 |
9 | L9M1-1(1A07500) | Citreicella thiooxidans CHLG 1T (AY639887) | 99.8 | KJ956944 |
9 | L9M1-2(1A07528) | Thalassospira xianhensis P-4T (EU017546) | 99.7 | KJ956945 |
9 | L9M1-4(1A07529) | Pseudomonas xanthomarina KMM 1447T (AB176954) | 99.2 | KJ956946 |
9 | L9M3-1(1A07543) | Martelella mediterranea MACL11T (AY649762) | 99.1 | KJ956987 |
9 | L9M3-2(1A07544) | Gordonia bronchialis DSM 43247T (CP001802) | 99.5 | KJ956988 |
9 | L9M3-3(1A07535) | Labrenzia aggregata IAM 12614T (AAUW01000037) | 100 | KJ956989 |
9 | L9M3-4(1A07828) | Novosphingobium indicum H25T (EF549586) | 99.5 | KJ956990 |
9 | L9M3-5(1A07831) | Citromicrobium bathyomarinum JF-1T (Y16267) | 99.9 | KJ956991 |
9 | L9M3-6(1A07536) | Microbacterium flavescens IFO 15039T (AB004716) | 99.3 | KJ956992 |
9 | L9M3-7(1A07829) | Amorphus orientalis YIM D10T (FJ998414) | 97.9 | KJ956993 |
10 | L10M1-1(1A07537) | Citreicella thiooxidans CHLG 1T (AY639887) | 99.8 | KJ956947 |
10 | L10M1-2(1A07538) | Thalassospira xianhensis P-4T (EU017546) | 99.7 | KJ956948 |
10 | L10M1-5(1A07539) | Marinobacter excellens KMM 3809T (AY180101) | 99.3 | KJ956950 |
10 | L10M1-6(1A07540) | Alcanivorax dieselolei B-5T (AY683537) | 99.8 | KJ956951 |
10 | L10M1-7(1A07824) | Sphingopyxis ummariensis UI2T (EF424391) | 99.8 | KJ956952 |
10 | L10M3-1(1A07545) | Martelella mediterranea MACL11T (AY649762) | 100 | KJ956949 |
10 | L10M3-2 | Nocardioides marinus CL-DD14T (DQ401093) | 99.6 | KJ956994 |
10 | L10M3-3(1A07538) | Thalassospira xianhensis P-4T ( EU017546) | 99.8 | KJ956973 |
表选项
图1 基于分离菌株16S rRNA基因序列与数据库中的参比序列构建的系统发育树 Figure 1 Phylogenetic tree based on 16S rRNA gene sequences of isolated strains and closely related sequences from EzTaxon database. Numbers at nodes indicate the bootstrap values over 60% (1000 resamplings). GenBank accession numbers of 16S rRNA gene sequences are given inparentheses. |
图选项 |
2.2 富集菌群DGGE分析菌群16S rRNA基因序列V3区段(约200 bp)的变性梯度凝胶电泳(DGGE)结果(图2)显示:(1) 不同站位样品的富集菌群组成差异比较大,除7号样品只有一条明显的亮带外,其他的样品的富集菌群多样性均比较高。(2) 同一站位样品用不同的培养基富集结果也不尽相同,采用M1培养基获得的富集产物菌群多样性一般比采用M3培养基要高。对DGGE中得到的22个主要亮带进行切胶回收和克隆测序,除band 53和band 61外,其余都成功测序。比对分析测序结果(表3)发现,在硫氧化富集培养物中gama-Proteobacteria和alpha-Proteobacteria是两种主要类群,gama-Proteobacteria包括Pseudomonas、Marinobacter和Thiomicrospira属微生物,alpha-Proteobacteria包括Citreicella、Thalassospira、Paracoccus、Altererythrobacter和Loktanella等属微生物。除了Altererythrobacter和Loktanella外,其余种属都有得到相同或相近的纯培养菌株。
图2 硫氧化富集菌群的16S rRNA基因序列V3区DGGE图谱 Figure 2 The DGGE profiles of the V3 region of the 16S rRNA gene retrieved from sulfur-oxidizing enrichments.Lanes M1 and lanes M3 are representatives for enrichment from M1 medium and M3 medium,the numbers before M1 and M3 stand for the sample sites. |
图选项 |
表3 DGGE优势条带的比对分析结果Table 3 Sequence alignment of predominant DGGE bands
Phyla | Band | Closest strains in GenBankGenBank | Similarities/% | Accession No. |
alpha -Proteobacteria | 73 | Altererythrobacter troitsensis K MMOL/L 6042T | 100 | AY676115 |
alpha-Proteobacteria | 62 | Citreicella thiooxidans CHLG 1T | 100 | AY639887 |
alpha-Proteobacteria | 92 | Citreicella thiooxidans CHLG 1T | 99.3 | AY639887 |
alpha-Proteobacteria | 32 | Loktanella atrilutea IG8T | 98.5 | AB246747 |
alpha-Proteobacteria | 102 | Mameliella alba JLT354-WT | 100 | EU734592 |
alpha-Proteobacteria | 93 | Paracoccus oceanense JLT1679T | 100 | HQ638977 |
alpha-Proteobacteria | 101 | Thalassospira xianhensis P-4T | 98.5 | EU017546 |
alpha-Proteobacteria | 31 | Thalassospira xianhensis P-4T | 99.3 | EU017546 |
gama-Proteobacteria | 52 | Marinobacter excellens K MMOL/L 3809T | 98.8 | AY180101 |
gama-Proteobacteria | 91 | Marinobacter excellens K MMOL/L 3809T | 98.8 | AY180101 |
gama-Proteobacteria | 12 | Marinobacter lipolyticus SM19T | 98.8 | AY147906 |
gama-Proteobacteria | 82 | Marinobacter vinifirmus FBT | 100 | DQ235263 |
gama-Proteobacteria | 23 | Pseudomonas indoloxydans IPL-1T | 100 | DQ916277 |
gama-Proteobacteria | 22 | Pseudomonas stutzeri ATCC 17588T | 99.4 | CP002881 |
gama-Proteobacteria | 51 | Pseudomonas stutzeri ATCC 17588T | 99.4 | CP002881 |
gama-Proteobacteria | 72 | Pseudomonas stutzeri ATCC 17588T | 99.4 | CP002881 |
gama-Proteobacteria | 11 | Pseudomonas xanthomarina 18231T | 100 | AB176954 |
gama-Proteobacteria | 21 | Pseudomonas xanthomarina 18231T | 100 | AB176954 |
gama-Proteobacteria | 71 | Pseudomonas xanthomarina 18231T | 100 | AB176954 |
gama-Proteobacteria | 81 | Thiomicrospira thermophila I78T | 100 | AB166731 |
表选项
2.3 初步检测菌株硫氧化能力将得到的48株菌接种到含酚红指示剂的培养基中,28 °C培养10 d。对照观察发现大部分菌株(24株)培养基变为黄色即pH下降,其中主要包括:Citreicella (L6M1-1、L8M1-1、L9M1-1和L10M1-1),Erythrobacter (L1M3-1),Labrenzia (L6M1-4、L6M3-4和L9M3-3),Microbacterium (L1M3-4和L5M1-2),Marinobacter (L3M3-1和L10M1-5),Martelella (L10M3-1、L3M3-2和L8M3-3),Paracoccus (L8M1-3),Thiomicrospira (L8M3-4),Pseudonocardia (L2M3-3),Sphingopyxis (L10M1-7)以及Thalassospira (L5M3-1、L6M1-2、L9M1-2和L10M3-3)和Ponticoccus sp. (L6M1-5)等;少数菌株(4株)培养基颜色变红即pH上升的有Alcanivorax (L10M1-6),Halomonas (L8M1-4)和Pseudomonas (L7M3-1和L9M1-4);其余菌株培养基无明显颜色变化。初步分析结果表明,本次从深海热液环境分离到的近60%菌株有硫氧化能力,其中主要是以PSO途径进行氧化,氧化过程中产生SO42-使pH下降,少部分是以S4I途径进行氧化,氧化过程中产生碱性中间代谢产物使pH升高。
2.4 硫氧化特性2.4.1 最适含硫底物:分别以S、S2-和S2O32-为底物,检测菌株的氧化能力。实验结果(表4)表明4株菌都是以S2O32-为底物时,氧化产物为SO42-,氧化过程进行的最彻底;当以S和S2-作为底物时,相同的培养时间内,氧化产物主要为SO32-,为不完全氧化。同时,还检测了菌株OD600和pH变化情况,发现4株菌均以S2O32-为底物时生物量最高,相同接种量条件下L6M1-5生长最好,OD600值最高,培养基pH下降幅度最大。通过比较菌株氧化能力和生长情况得出:L6M1-5和另外3株硫氧化菌的最适底物均为S2O32-。
表4 四株硫氧化菌在不同含硫底物下的代谢产物Table 4 The metabolite test of four sulfur-oxidizing strains under different sulfur-containing substrates
Substrates | Ponticoccus sp. L6M1-5 | Thioclava atlantica 13D2W-2 | Thioclava Indica DT23-4 | Defluviimona indicum 20V17 |
S | SO42–,SO32– | SO32– | SO32– | SO32– |
S2O32– | SO42– | SO42– | SO42– | SO42– |
S2– | SO32– | SO32– | SO32– | SO32– |
表选项
2.4.2 最适底物浓度:本实验进一步研究了4株菌的最适S2O32-浓度,结果(图3)显示菌株Ponticoccus sp. L6M1-5和T. atlantica 13D2W-2在底物浓度为10 mmol/L时生物量最高;当S2O32-浓度大于10 mmol/L时,OD600值开始降低,表明这2株菌在该实验条件下最适的S2O32-浓度为10 mmol/L。菌株D. indicum 20V17和T. indica DT23-4分别在S2O32-浓度为20 mmol/L和30 mmol/L时OD600值最高,表明D. indicum 20V17和T. indica DT23-4在该实验条件下最适的S2O32-浓度分别是20 mmol/L和30 mmol/L。
图3 四株硫氧化菌在不同S2O32–浓度下的生长情况 Figure 3 The growth characterization of four strains under different SO32– concentration. |
图选项 |
2.4.3 硫氧化速率:在实验条件下四株硫氧化菌均表现出了较强的硫氧化能力,如图4所示,菌株Ponticoccus sp. L6M1-5在20 h时达到最大生物量,其余3株菌氧化生长周期则较长,至少需要30 h。最大氧化速率一般出现在对数生长期后期或稳定期,同时伴随着SO42-的大量生成。通过计算,L6M1-5氧化S2O32-的最大速率为0.56 mmol/(L·h),高于T. indica DT23-4 [0.48 mmol/(L·h)]、D. indicum 20V17 [0.46 mmol/(L·h)]和T. atlantica 13D2W-2 [0.27 mmol/(L·h)],具有一定优势。
图4 四株菌在最适底物条件下的氧化特征 Figure 4 The characterization of sulfur oxidation by four strains under the optimum S2O32– concentration. A:Ponticoccus sp. L6M1-5, B: T. atlantica 13D2W-2, C: T. indica DT23-4, D: D. indicum 20V17. |
图选项 |
3 讨论硫氧化微生物是海洋环境中重要的生物类群,研究其生物多样性和相关的能量代谢是理解深海热液生态系统的重要线索。本实验基于可培养方法首次对南大西洋热液环境样品中的硫氧化菌进行了多样性分析。由于培养基的筛选性和培养条件的局限性,通过富集培养的方法只能从一定程度上揭示深海热液区硫氧化微生物细菌的多样性[24]。此外,富集培养基M1和M3均为化能自养培养基,但所分到的菌多为化能异养或兼性自养菌,推测可能是样品中含有一定量的有机质,使化能异养或兼性营养菌成为富集物中的优势菌[11]。通过富集培养和分离纯化获得的优势类群为alpha-Proteobacteria (58.3%),其中的Rhodobacterales目和 Rhodospirillales目是海洋中广泛存在的硫氧化菌群[20, 25]。
DGGE结果进一步揭示了环境样品中微生物的多样性和不同站位样品之间菌群结构的差异。分离培养方法和DGGE技术分析的优势类群基本一致,但也有差异,DGGE结果中的2个优势属Altererythrobacter和Loktanella没有得到纯培养。对比本实验中从不同类型样品中分离到的细菌,发现从钙质软泥和沉积物样品中分离到的细菌数量和多样性最高,从硫化物样品中分离到的细菌数量和多样性最低,推测原因是硫化物本身的理化因子决定该环境样品中菌群的特殊性[10]。Michael Hügler等通过构建16S rRNA和硫氧化功能基因文库的方法研究了大西洋中脊Logatchev热液区的硫氧化微生物多样性,发现gama-Proteobacteria和epsilon-Proteobacteria 是优势类群[5],与本实验结果有一定差异。分析原因,可能是由于epsilon-Proteobacteria对生长环境和培养条件要求比较严苛,常规的培养方法很难获得相关菌株[2, 26],下一步尝试用专门富集epsilon-Proteobacteria的培养基和培养条件进行硫氧化细菌的分离培养。
所分离的大部分菌株(24株)能使培养基pH下降,推测菌株利用PSO途径将S2O32-直接氧化生成SO42-,其中Citreicella属、paracoccus属和Thiomicrospira属的这一硫氧化特征已有相关报道[17, 27, 28]。利用S4I途径产生中间代谢产物使培养基pH上升的硫氧化菌多见于Halomona属和Pseudomonas属[9],与本实验的结果一致,但Alcanivorax属硫氧化特性还未见相关报道。PSO和S4I这两种硫氧化途径都是依赖sox多酶复合体,sox多酶复合体在海洋硫氧化菌中广泛存在,相应的sox基因在alpha-、beta-、gama-和epsilon-Proteobacteria以及Chlorobiaceae中均有发现,是深海热液区重要的一类功能基因[5, 7, 25, 26, 27, 28, 29]。此外,还有部分菌株培养后pH不变,这部分菌的氧化能力和氧化途径有待进一步探究。
本实验探究了L6M1-5与菌株D. indicum 20V17,T. indica DT23-4和T. atlantica 13D2W-2的硫氧化特性,包括最适含硫底物,最适含硫底物浓度及最适条件下的硫氧化速率的检测。结果表明在以S2O32-为底物时,四株硫氧化菌均表现出了较强的硫氧化能力。其中,分离到的潜在新种Ponticoccus sp. L6M1-5生长周期短,氧化能力强,最大氧化速率达到0.56 mmol/(L·h),相对于其他已报到的硫氧化菌如Citreicella thiooxidans [28]、Thioclava pacifica[30]和Thiomicrospira thermophila[31]等,在培养条件、氧化能力和生长周期方面具有明显优势,推测在工业化含硫废水的处理方面具有潜在的应用价值。
致谢
感谢中国海洋微生物菌种保藏管理中心(MCCC)的工作人员,在菌株入库保藏过程中的辛勤付出。
参考文献
[1] | Kvenvolden KA, Weliky K, Nelson H, Des Marais DJ. Submarine seep of carbon dioxide in Norton Sound, Alaska. Science, 1979, 205(4412):1264-1266. |
[2] | Yamamoto M, Takai K. Sulfur metabolisms in epsilon-and gamma-Proteobacteria in deep-sea hydrothermal fields. Frontiers in Microbiology, 2011, 2:192. |
[3] | Dubilier N, Bergin C, Lott C. Symbiotic diversity in marine animals:the art of harnessing chemosynthesis. Nature Reviews Microbiology, 2008, 6(10):725-740. |
[4] | Amend JP, McCollom TM, Hentscher M, Bach W. Catabolic and anabolic energy for chemolithoautotrophs in deep-sea hydrothermal systems hosted in different rock types. Geochimica et Cosmochimica Acta, 2011, 75(19):5736-5748. |
[5] | Hügler M, Gärtner A, Imhoff JF. Functional genes as markers for sulfur cycling and CO2 fixation in microbial communities of hydrothermal vents of the Logatchev field. FEMS Microbiology Ecology, 2010, 73(3):526-537. |
[6] | Moran MA, González JM, Kiene RP. Linking a bacterial taxon to sulfur cycling in the sea:studies of the marine Roseobacter group. Geomicrobiology Journal, 2003, 20(4):375-388. |
[7] | Akerman NH, Butterfield DA, Huber JA. Phylogenetic diversity and functional gene patterns of sulfur-oxidizing subseafloor Epsilonproteobacteria in diffuse hydrothermal vent fluids. Frontiers in Microbiology, 2013, 4:185. |
[8] | Sievert SM, Hügler M, Taylor CD, Wirsen CO. Sulfur oxidation at deep-sea hydrothermal vents//Dahl C, Friedrich CG. Microbial Sulfur Metabolism. First edition. Berlin, Heidelberg, German:Springer, 2008. |
[9] | Ghosh W, Dam B. Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea. FEMS Microbiology Reviews, 2009, 33(6):999-1043. |
[10] | 谢燕荣. 东太平洋热液烟囱硫化物中重金属抗性微生物及南大西洋跨洋中脊表层海水中微生物种群结构分析. 厦门大学硕士学位论文, 2014. |
[11] | Teske A, Brinkhoff T, Muyzer G, Moser DP, Rethmeier J, Jannasch HW. Diversity of thiosulfate-oxidizing bacteria from marine sediments and hydrothermal vents. Applied and Environmental Microbiology, 2000, 66(8):3125-3133. |
[12] | Liu Y, Lai QL, Du J, Xu HX, Jiang LJ, Shao ZZ. Thioclava indica sp. nov., isolated from surface seawater of the Indian Ocean. Antonie Van Leeuwenhoek, 2015, 107(1):297-304. |
[13] | Liu CL, Shao ZZ. Alcanivorax dieselolei sp. nov., a novel alkane-degrading bacterium isolated from sea water and deepsea sediment. International Journal of Systematic and Evolutionary Microbiology, 2005, 55(3):1181-1186. |
[14] | Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J. Introducing EzTaxone:a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. International Journal of Systematic and Evolutionary Microbiology, 2012, 62(Pt 3):716-721. |
[15] | Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA 5:molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 2011, 28(10):2731-2739. |
[16] | 赖其良. 西南印度洋中脊深海水体PAHs降解菌的多样性分析. 国家海洋局第三海洋研究所硕士学位论文, 2007. |
[17] | Javor BJ, Wilmot DB, Vetter RD. pH-dependent metabolism of thiosulfate and sulfur globules in the chemolithotrophic marine bacterium Thiomicrospira crunogena. Archives of Microbiology, 1990, 154(3):231-238. |
[18] | Jiang LJ, Xu HX, Shao ZZ, Long MN. Defluviimonas indica sp. nov., a marine bacterium isolated from a deep-sea hydrothermal vent environment. International Journal of Systematic and Evolutionary Microbiology, 2014, 64(Pt 6):2084-2088. |
[19] | Lai QL, Li SN, Xu HX, Jiang LJ, Zhang RQ, Shao ZZ. Thioclava atlantica sp. nov., isolated from deep sea sediment of the Atlantic Ocean. Antonie Van Leeuwenhoek, 2014, 106(5):919-925. |
[20] | Lenk S, Moraru C, Hahnke S, Arnds J, Richter M, Kube M, Reinhardt R, Brinkhoff T, Harder J, Amann R, Muβmann M. Roseobacter clade bacteria are abundant in coastal sediments and encode a novel combination of sulfur oxidation genes. The ISME Journal, 2012, 6(12):2178-2187. |
[21] | Luo JH, Lv DZ, Pan YB. Determination of chlorine, sulfite, sulfate contents in vegetables and fruits by ion chromatography. Chinese Journal of Tropical Crops, 2011, 32(6):1176-1180.(in Chinese). 罗金辉, 吕岱竹, 潘永波. 离子色谱法测定蔬菜水果中氯离子、亚硫酸盐、硫酸盐含量. 热带作物学报, 2011, 32(6):1176-1180. |
[22] | Yuan Y, Zhang N, Lu ZQ, Ye HM. Mutual influence with other with other anionic while analysing sulfite by ion chromatography. Chinese Journal of Analysis Laboratory, 2010, 29(S1):281-284.(in Chinese). 袁悦, 张宁, 卢造权, 叶红梅. 离子色谱法分析亚硫酸盐时与其它阴离子的相互影响. 分析试验室, 2010, 29(增刊):281-284. |
[23] | Gürtler V, Stanisich VA. New approaches to typing and identification of bacteria using the 16s-23s rDNA spacer region. Microbiology, 1996, 142(1):3-16. |
[24] | Tabacchioni S, Chiarini L, Bevivino A, Cantale C, Dalmastri C. Bias caused by using different isolation media for assessing the genetic diversity of a natural microbial population. Microbial Ecology, 2000, 40(3):169-176. |
[25] | Meyer B, Imhoff JF, Kuever J. Molecular analysis of the distribution and phylogeny of the soxB gene among sulfuroxidizing bacteria-evolution of the Sox sulfur oxidation enzyme system. Environmental Microbiology, 2007, 9(12):2957-2977. |
[26] | Meyer JL, Akerman NH, Proskurowski G, Huber JA. Microbiological characterization of post-eruption "snowblower" vents at Axial Seamount, Juan de Fuca Ridge. Frontiers in Microbiology, 2013, 4:153. |
[27] | Friedrich CG, Rother D, Bardischewsky F, Quentmeier A, Fischer J. Oxidation of reduced inorganic sulfur compounds by bacteria:emergence of a common mechanism? Applied and Environmental Microbiology, 2001, 67(7):2873-2882. |
[28] | Sorokin DY, Tourova TP, Muyzer G. Citreicella thiooxidans gen. nov., sp. nov., a novel lithoheterotrophic sulfur-oxidizing bacterium from the Black Sea. Systematic and Applied Microbiology, 2005, 28(8):679-687. |
[29] | Petri R, Podgorsek L, Imhoff JF. Phylogeny and distribution of the soxB gene among thiosulfate-oxidizing bacteria. FEMS Microbiology Letters, 2001, 197(2):171-178. |
[30] | Sorokin DY, Tourova TP, Spiridonova EM, Rainey FA, Muyzer G. Thioclava pacifica gen. nov., sp. nov., a novel facultatively autotrophic, marine, sulfur-oxidizing bacterium from a near-shore sulfidic hydrothermal area. International Journal of Systematic and Evolutionary Microbiology, 2005, 55(3):1069-1075. |
[31] | Takai K, Hirayama H, Nakagawa T, Suzuki Y, Nealson KH, Horikoshi K. Thiomicrospira thermophila sp. nov., a novel microaerobic, thermotolerant, sulfur-oxidizing chemolithomixotroph isolated from a deep-sea hydrothermal fumarole in the TOTO caldera, Mariana Arc, Western Pacific. International Journal of Systematic and Evolutionary Microbiology, 2004, 54(6):2325-2333. |