刘伟, 皮雄娥, 王欣
浙江省农业科学院植物保护与微生物研究所, 浙江 杭州 310021
收稿日期:2016-03-18;修回日期:2016-05-13;网络出版日期:2016-05-23
基金项目:浙江省公益性项目(2014C32G4010031);国家“863计划”(2015AA020701);浙江省植物有害生物防控重点实验室-省部共建国家重点实验室培育基地(2010DS700124-ZZ1604)
*通信作者:王欣,Tel:+86-571-86404066;Fax:+86-571-86417303;E-mail:xxww101@sina.com
摘要: 抗菌肽是生物体内诱导产生的一类具有抗菌作用的生物活性肽,在机体抵抗病原入侵方面起着重要作用。近年来,肠道微生态研究炙手可热,抗菌肽与肠道健康的研究正广泛开展。相关研究结果表明,抗菌肽表达水平的高低可以用来评估机体肠道健康状态,从而监测抗菌肽表达水平来建立一种疾病预防和治疗过程中的辅助诊断手段。本文围绕抗菌肽对肠道菌群结构和免疫影响两方面的最新研究进展进行归纳与分析,旨在为临床诊断与治疗提供参考。
关键词: 抗菌肽 肠道稳态 肠道微生物
Progress in studying antimicrobial peptides and intestinal health
Liu Wei, Pi Xiong'e, Wang Xin
Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang Province, China
Received 18 March 2016; Revised 13 May 2016; Published online 23 May 2016
*Corresponding author: Tel:+86-571-86404066;Fax:+86-571-86417303;E-mail:xxww101@sina.com
Supported by Public Projects of Zhejiang Province (2014C32G4010031) and National High-tech R&D Program of China (2015AA020701) and by the State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control (2010DS700124-ZZ1604)
Abstract: Antimicrobial peptides (AMPs) are bioactive short peptides produced in organisms. AMPs have important roles in resisting pathogen invasion. In recent years, several studies on intestinal microecology is hot and the influence of antimicrobial peptides on intestinal health is widely concerned. Relevant results have demonstrated that the expression level of AMPs can be used to assess the body's intestinal health, thereby an auxiliary method could be established through monitoring on the expression level of AMPs during disease prevention and treatment. In this paper, research advances in antimicrobial peptides in intestinal microflora structure and immune effect were summarized and analyzed to provide references for clinical diagnosis and treatment.
Key words: antimicrobial peptides gut homeostasis intestinal microbiota
微生物细胞数量占人类细胞的70%-90%,其基因数量却是人类基因的1000倍之多[1]。作为人体与外界接触面积最大的消化道器官-肠道,寄居的微生物数量约为人类细胞数量的10倍,其基因总数是人体基因数量的100倍左右[2]。抵御众多微生物感染肠道的重要防御机制之一就是肠道分泌的抗菌肽。作为天然免疫系统的重要组成部分,抗菌肽在机体对抗感染及炎症中发挥重要作用。除此之外,抗菌肽还具有维持菌群稳定、促血管生成和免疫调节等多种生理功能(图 1)。由于抗菌肽是最有希望取代抗生素候选者之一,所以各国科学家和制药公司开始投入资金进行大规模的研发。世界卫生组织预计未来的几年内,天然抗菌剂的产值将达到25亿美元。截止2016年3月,美国已有两类新抗菌肽已经上市,分别是RXGeneric drugs公司生产的多粘菌素和Trimeris公司生产的恩夫韦肽。除此之外,一些能诱导内源性抗菌肽表达的诱导剂如维生素D3和异亮氨酸和丁酸钠也正进行Ⅱ期临床试验。
图 1. 抗菌肽具有多功能作用[4] Figure 1. Multifunctional roles of antimicrobial peptides[4] |
图选项 |
潘氏细胞和肠细胞是人类肠道生产抗菌肽的主要场所,是肠黏膜屏障重要的组成基础。作为肠道天然黏膜免疫屏障中关键的细胞分子组成成分,与肠道共生细菌共同维持肠道菌群稳定。Donia等通过计算机预测在人体微生物中有超过3000种候选的生物合成基因簇,这其中包含了很多编码抗菌肽的基因[3]。
防御素作为最重要的一类抗菌肽,在肠黏膜抗微生物中的作用颇受关注,其抗菌谱广、不易产生耐药性和不影响肠道微生态平衡。防御素主要是由半胱氨酸残基组成,往往具有3个二硫键的反式β-sheets结构。防御素分为α防御素,β防御素和θ-防御素。β防御素在所有脊椎动物中角化细胞和上皮细胞中分泌产生,二硫键形成部位在1-5、2-4和3-6位置上[5],α存在大部分哺乳动物里,二硫键形成部位在1-6、2-4和3-5位置上[6],θ只存在灵长类动物中[7]。目前在人类中发现6种α防御素[8]和39种β防御素[9]。在牛和猪的基因组中发现了至少57个和29个编码β防御素的基因,而鸡的基因组中含有14种β防御素,但α防御素并没有在这些动物体内发现[10-11]。α防御素HBD1-4一般在嗜中性粒细胞颗粒中,其余的2种α防御素(HD5和HD6)存在小肠的潘氏细胞中[7]。除了防御素以外,肠细胞还分泌其他类型抗菌肽cathelicidins (如LL-37)、C型凝集素(REG蛋白家族)、RNase和S100 (如钙蛋白),在细菌、真菌和病毒侵入过程中起着共同保护宿主以及稳定肠内微生物菌群的作用,一旦肠道中发生细菌感染和炎症反应时,其抗菌肽的表达量均发生不同程度的变化,如表 1。
表 1. 肠道抗菌肽的分类以及在感染和炎症过程中其含量的变化[12] Table 1. Classification of intestinal antimicrobial peptides and their expression during infection and intestinal inflammation[12]
Classes | Names | Species | Producing cells | Expression during infection |
α-Defensins | HD-5, HD-6 | H.s. | Paneth cells | Salmonella↑ CD↓ UC↑ |
Cryptdinl | M.m. | Paneth cells | S. typhimurium↑ | |
CRS | M.m. | Paneth cells | — | |
β-Defensins | hBD1 | H.s. | Enterocytes | Shigella↓ CD↓ UC↓ |
hBD2 | H.s. | Enterocytes | EPEC↑ S. typhimurium↑ UC↑ CD↑ | |
hBD3、hBD4 | H.s. | Enterocytes | Shigella | |
hBD5、hBD6 | H.s. | Enterocytes | — | |
mBD1 | M.m. | Enterocytes | C. rodentium↑ | |
mBD3 | M.m. | Enterocytes | C. rodentium↑ DSS↓ | |
mBD2、mBD4、mBD5 | M.m. | Enterocytes | — | |
Cathelicidins | LL-37/hCAP18 | H.s. | ICEs | Shigella ↓ UC↑ |
CRAMP | M.m. | ICEs | DSS↑L. monocytogenes↑ | |
Other AMP | RegⅢα or HIP/PAP | H.s. | Paneth cells | — |
RegⅢβ | M.m. | Paneth cells | C. rodentium↑ | |
RegⅢγ | M.m. | Paneth cells | Salmonella↑ C. rodentium↑ | |
sPLA2 | 人 | Paneth cells | — | |
CCL20/MIP-3α | H.s./M.m. | ICEs | IECs EPEC↑ UC↑ CD↑ | |
Lysozyme C | H.s. | Paneth cells | — | |
Lysozyme C type P | M.m. | Paneth cells | S. typhimurium↓ UC↑ | |
BPI | M.m. | ICEs | UC↑ CD↑ | |
BPI | H.s. | ICEs | — | |
ANG4 | M.m. | Paneth cells | — | |
RELMβ | H.s./M.m. | Goblet cells | — | |
H.s.: Homo sapiens; M.m.: Mus musculus. |
表选项
1 抗菌肽对机体免疫调节至关重要 在小肠黏膜定殖的微生物大概有1014多种,这些共生细菌对人体是有益的,可以通过他们参与营养物的消化吸收、合成人体生长发育所需的维生素、合成限制病原菌生长的物质[13]。在稳定状态下,共生细菌对宿主是有益的。肠道上皮细胞主要通过模式识别受体和微生物相关分子模式2种方式来监视肠道微生物。模式识别受体一旦激活,就会刺激上皮细胞抗菌肽和黏液的合成和释放[14-15]。而肠道菌群一旦紊乱或者平衡的微生物菌群打破后,就会干扰肠道上皮细胞,造成炎症反应。在克罗恩病(Crohn’s disease,CD)病患者中发现,一些共生细菌会增加宿主的免疫系统活性。尤其在CD疾病患者中,在慢性炎症性肠病(inflammatory bowel disease,IBD)中发现抗菌肽数量的减少,会加重炎症[16]。此外,周期性牵张造成抗菌肽的下调表达,也会激发促炎症免疫反应,增加感染和严重败血症的风险[17]。Clay等****认为肠道菌群和免疫系统之间的互作可能影响Ⅰ型糖尿病发展,微生物、细菌产物、抗菌肽和微生物代谢物都有可能直接促进了炎症[1]。孙嘉等研究发现,胰岛β细胞可表达CRAMP。而此类抗菌肽在Ⅰ型糖尿病发病过程中有所缺失,补充外源性CRAMP可通过调节胰岛中的促炎型免疫细胞表型、炎症因子表达等机制发挥抗Ⅰ型糖尿病的作用。进一步研究表明,Cathelicidins类抗菌肽的产生受肠道菌群代谢产物短链脂肪酸的调控,该研究证实Cathelicidins抗菌肽和自身免疫性糖尿病的关联,从分子水平揭示了Ⅰ型糖尿病发病机制,并为防治Ⅰ型糖尿病提供了新思路[18]。
2 抗菌肽对肠道菌群结构塑造的重要性 最近研究发现,成年小鼠对白色念珠菌定殖具有一定的抗性,结果证明在肠道菌群中的厚壁菌门和拟杆菌门细菌起着关键性作用[19]。文章中指出拟杆菌可以增加缺氧诱导因子HIF-1A,从而增加LL-37-CRAMP的分泌,激活宿主自身免疫,减少其定殖。添加链霉素后,小鼠肠道菌群减少了0.5个数量级。添加青霉素,肠道菌群减少了3-4个数量级。抗生素处理可以去除厌氧菌后,尤其是多形拟杆菌(Bacteroides thetaiotamicron),造成了白色念珠菌侵染小鼠肠道。同一属的2种菌对白色念珠菌的定殖影响也是不同的。B. theta可以减少其定殖,而B. fragilis却不同,原因可能是每种细菌对宿主免疫应答不同,而且B. theta还可以刺激其它类型抗菌肽如RegⅢ产生,这些具有杀死真菌的效果。在缺陷型小鼠模型的研究结果表明,抗菌肽CRAMP基因敲除小鼠后,在结肠中表现出肠炎症状,而随后用葡聚糖硫酸钠(Dextran sodium sulfate,DSS)处理以后,则患病症状进一步加重[20]。当把野生小鼠骨髓细胞移植到敲除小鼠则缓和了结肠炎症状。经口服沙门氏菌攻击后,含有HD-5转基因的小鼠显示对沙门氏菌的排斥能力增加[21]。相反基质金属蛋白酶MMP7缺失的小鼠,丧失了具有生物活性的肠防御素,失去了清除肠道里的病原菌的能力[22]。而且在2组互补小鼠模型比较中发现,肠道菌群结构同时发生了戏剧性改变。在含有HD-5转基因小鼠的小肠中,厚壁菌门细菌数量较少,拟杆菌门细菌数量得到增加;而含有MMP7缺陷的小鼠情况正好相反,并且过表达HD-5会造成小肠末端分节丝状杆菌的显著性减少和固有层Th17细胞的数量减少[23]。最终结果明确指出肠道抗菌肽可以作为塑造微生物群组成和胃肠道炎症的一个关键因素。
3 抗菌肽对畜禽动物机体健康的影响 多项研究强调,直接喂养抗菌肽对猪生长、肠道形态和免疫状态具有很好的效果。在断奶仔猪采食过程中添加大肠杆菌产生的细菌素-大肠杆菌素E1,4 d后实验组与对照组相比,能显著的改善体重和饲料转化效率。含有大肠杆菌素E1的饲料也能减少粪便和回肠中大肠杆菌滴度,同时能减少腹泻发病率,改善腹泻的严重程度。并且喂食大肠杆菌素E1后,降低了前炎性细胞活素(IL-1β和TNF-α)在猪回肠中的表达水平[24]。连续6 d喂养重组天蚕素A/D也达到了同样的效果:提高了生长速率和饲料利用率,降低了腹泻发生率。对肠结构形态或者氮素能力利用率都没有产生明显的影响。经过21 d的牛乳铁蛋白抗菌肽喂养,提高了仔猪生长性能和降低仔猪的腹泻率。在仔猪断奶后连续4周喂养,直接添加人工合成的抗菌肽(AMP-A3或者P5)不仅能提高营养消化性能,还能改善肠道形态和生长性能,并对血清中IgA、IgG和IgM的浓度也不会造成影响[25]。此外,AMP-3和P5还能降低潜在有害细菌梭菌的数量和大肠杆菌群在回肠、盲肠及粪便中的数量。同样,在肉鸡喂养实验中也表现出很好的效果。在饲料中添加AMP-3,肉鸡体重和饲料转化率有所增加,肉鸡小肠中绒毛高度和绒毛高度与腺窝深度比都有所增加[26]。添加含有重组天蚕素的酵母培养基,可以有效提高肉鸡的生长性能,减少空肠和盲肠好氧菌的数量[27]。以上所有的动物实验都表明添加抗菌肽对动物有益,在生长促进和疾病控制方面可以作为抗生素的替代药物。
4 抗菌肽对肠道健康的前景与展望 由于抗菌肽存在易酶解、产量低、纯化困难且合成价格昂贵等问题,使抗菌肽的研究与应用受到了限制。研究表明,小分子化合物丁酸可以诱导防御素合成和提高肠道中病原菌的清除率,而且不会引起炎症反应[28-29]。这种诱导剂或者含有该种诱导剂不同形式的化合物,作为抗生素的替代品,经济有效。但这些化合物在促进生长、肠道健康、微生物菌群平衡还未进行相应的动物实验。探明这些问题,将有助于更清楚、全面地解析疾病、肠道菌群与抗菌肽三者之间相关性。
近年来,在肠道微生态与健康方面的研究受到各国科学家的重视,一些研究结果表明肠道微生物与疾病如癌症、肥胖、神经变性疾病的发生具有一定的相关性,我们在前期的研究中发现环境因素对肠道细菌结构的影响以及对肠道菌群调控的可能性。通过体外发酵系统评估多糖、寡糖类添加剂对肠道菌群结构的调节作用,揭示我国特定食品组份对肠道菌群的调节影响以及对我国居民健康的作用[30-31]。虽然我们对于肠道微生物菌群的构成逐步在增加,但是抗菌肽作为宿主分泌的代谢产物之一,调控并稳定肠道菌群方式和生理功能我们仍不清楚,目前比较明确的是在不同氧浓度、还原剂和pH值下抗菌肽的杀菌能力不同[32-33]。此外,对抗菌肽的研究也主要集中在新型抗菌肽的发现、结构改造、药效评估以及高效表达水平上,从肠道体内角度来研究抗菌肽、肠道微生物和机体健康之间的互作研究还刚刚起步。相信在不久的将来,随着对肠道微生物菌群功能的揭秘,一些临床上的菌群失调导致的肥胖、肠炎、糖尿病和癌症等问题也将迎刃而解。肠道菌群与抗菌肽互作关联机制的阐明,必将促进人类的健康。
参考文献
[1] | Semenkovich CF, Danska J, Darsow T, Dunne JL, Huttenhower C, Insel RA, McElvaine AT, Ratner RE, Shuldiner AR, Blaser MJ. American diabetes association and JDRF research symposium: diabetes and the microbiome.Diabetes, 2015, 64(12): 3967–3977DOI:10.2337/db15-0597. |
[2] | Bull MJ, Plummer NT. Part 1: The human gut microbiome in health and disease.Integrative Medicine, 2014, 13(6): 17–22. |
[3] | Donia MS, Cimermancic P, Schulze CJ, Wieland Brown LC, Martin J, Mitreva M, Clardy J, Linington RG, Fischbach MA. A systematic analysis of biosynthetic gene clusters in the human microbiome reveals a common family of antibiotics.Cell, 2014, 158(6): 1402–1414DOI:10.1016/j.cell.2014.08.032. |
[4] | Robinson K, Deng Z, Hou YQ, Zhang GL. Regulation of the intestinal barrier function by host defense peptides.Frontiers in Veterinary Science, 2015, 2: 57. |
[5] | Kaiser V, Diamond G. Expression of mammalian defensin genes.Journal of Leukocyte Biology, 2000, 68(6): 779–784. |
[6] | Yang D, Biragyn A, Hoover DM, Lubkowski J, Oppenheim JJ. Multiple roles of antimicrobial defensins, cathelicidins, and eosinophil-derived neurotoxin in host defense.Annual Review of Immunology, 2004, 22: 181–215DOI:10.1146/annurev.immunol.22.012703.104603. |
[7] | Selsted ME, Ouellette AJ. Mammalian defensins in the antimicrobial immune response.Nature Immunology, 2005, 6(6): 551–557DOI:10.1038/ni1206. |
[8] | Patil A, Hughes AL, Zhang GL. Rapid evolution and diversification of mammalian α-defensins as revealed by comparative analysis of rodent and primate genes.Physiological Genomics, 2004, 20(1): 1–11DOI:10.1152/physiolgenomics.00150.2004. |
[9] | Patil AA, Cai YB, Sang YM, Blecha F, Zhang GL. Cross-species analysis of the mammalian β-defensin gene family: presence of syntenic gene clusters and preferential expression in the male reproductive tract.Physiological Genomics, 2005, 23(1): 5–17DOI:10.1152/physiolgenomics.00104.2005. |
[10] | Lynn DJ, Higgs R, Lloyd AT, O'Farrelly C, Hervé-Grépinet V, Nys Y, Brinkman FSL, Yu PL, Soulier A, Kaiser P, Zhang GL, Lehrer RI. Avian β-defensin nomenclature: a community proposed update.Immunology Letters, 2007, 110(1): 86–89DOI:10.1016/j.imlet.2007.03.007. |
[11] | Xiao YJ, Hughes AL, Ando J, Matsuda Y, Cheng JF, Skinner-Noble D, Zhang GL. A genome-wide screen identifies a single β-defensin gene cluster in the chicken: implications for the origin and evolution of mammalian defensins.BMC Genomics, 2004, 5: 56DOI:10.1186/1471-2164-5-56. |
[12] | Turnbaugh PJ, Stintzi A. Human health and disease in a microbial world.Frontiers in Microbiology, 2011, 2: 190. |
[13] | Ostaff MJ, Stange EF, Wehkamp J. Antimicrobial peptides and gut microbiota in homeostasis and pathology.EMBO Molecular Medicine, 2013, 5(10): 1465–1483DOI:10.1002/emmm.201201773. |
[14] | Kabat AM, Srinivasan N, Maloy KJ. Modulation of immune development and function by intestinal microbiota.Trends in Immunology, 2014, 35(11): 507–517DOI:10.1016/j.it.2014.07.010. |
[15] | McDermott AJ, Huffnagle GB. The microbiome and regulation of mucosal immunity.Immunology, 2014, 142(1): 24–31DOI:10.1111/imm.2014.142.issue-1. |
[16] | Wehkamp J, Koslowski M, Wang G, Stange EF. Barrier dysfunction due to distinct defensin deficiencies in small intestinal and colonic Crohn's disease.Mucosal Immunology, 2008, 1(Suppl 1): S67–S74. |
[17] | Karadottir H, Kulkarni NN, Gudjonsson T, Karason S, Gudmundsson GH. Cyclic mechanical stretch down-regulates cathelicidin antimicrobial peptide expression and activates a pro-inflammatory response in human bronchial epithelial cells.PeerJ, 2015, 3: e1483DOI:10.7717/peerj.1483. |
[18] | Sun J, Furio L, Mecheri R, van der Does Anne M, Lundeberg E, Saveanu L, Chen YQ, van Endert P, Agerberth B, Diana J. Pancreatic β-cells limit autoimmune diabetes via an immunoregulatory antimicrobial peptide expressed under the influence of the gut microbiota.Immunity, 2015, 43(2): 304–317DOI:10.1016/j.immuni.2015.07.013. |
[19] | Fan D, Coughlin LA, Neubauer MM, Kim J, Kim MS, Zhan XW, Simms-Waldrip TR, Xie Y, Hooper LV, Koh AY. Activation of HIF-1α and LL-37 by commensal bacteria inhibits Candida albicans colonization.Nature Medicine, 2015, 21(7): 808–814DOI:10.1038/nm.3871. |
[20] | Koon HW, Shih DQ, Chen J, Bakirtzi K, Hing TC, Law I, Ho S, Ichikawa R, Zhao DZ, Xu H, Gallo R, Dempsey P, Cheng GH, Targan SR, Pothoulakis C. Cathelicidin signaling via the Toll-like receptor protects against colitis in mice.Gastroenterology, 2011, 141(5): 1852–1863DOI:10.1053/j.gastro.2011.06.079. |
[21] | Salzman NH, Ghosh D, Huttner KM, Paterson Y, Bevins CL. Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin.Nature, 2003, 422(6931): 522–526DOI:10.1038/nature01520. |
[22] | Wilson CL, Ouellette AJ, Satchell DP, Ayabe T, López-Boado YS, Stratman JL, Hultgren SJ, Matrisian LM, Parks WC. Regulation of intestinal α-defensin activation by the metalloproteinase matrilysin in innate host defense.Science, 1999, 286(5437): 113–117DOI:10.1126/science.286.5437.113. |
[23] | Salzman NH, Hung K, Haribhai D, Chu H, Karlsson-Sj?berg J, Amir E, Teggatz P, Barman M, Hayward M, Eastwood D, Stoel M, Zhou YJ, Sodergren E, Weinstock GM, Bevins CL, Williams CB, Bos NA. Enteric defensins are essential regulators of intestinal microbial ecology.Nature Immunology, 2010, 11(1): 76–83DOI:10.1038/ni.1825. |
[24] | Cutler SA, Lonergan SM, Cornick N, Johnson AK, Stahl CH. Dietary inclusion of colicin E1 is effective in preventing postweaning diarrhea caused by F18-positive Escherichia coli in pigs.Antimicrobial Agents and Chemotherapy, 2007, 51(11): 3830–3835DOI:10.1128/AAC.00360-07. |
[25] | Yoon JH, Ingale SL, Kim JS, Kim KH, Lohakare J, Park YK, Park JC, Kwon IK, Chae BJ. Effects of dietary supplementation with antimicrobial peptide-P5 on growth performance, apparent total tract digestibility, faecal and intestinal microflora and intestinal morphology of weanling pigs.Journal of the Science of Food and Agriculture, 2013, 93(3): 587–592DOI:10.1002/jsfa.2013.93.issue-3. |
[26] | Choi SC, Ingale SL, Kim JS, Park YK, Kwon IK, Chae BJ. An antimicrobial peptide-A3: effects on growth performance, nutrient retention, intestinal and faecal microflora and intestinal morphology of broilers.British Poultry Science, 2013, 54(6): 738–746DOI:10.1080/00071668.2013.838746. |
[27] | Wen LF, He JG. Dose-response effects of an antimicrobial peptide, a cecropin hybrid, on growth performance, nutrient utilisation, bacterial counts in the digesta and intestinal morphology in broilers.British Journal of Nutrition, 2012, 108(10): 1756–1763DOI:10.1017/S0007114511007240. |
[28] | Sunkara LT, Jiang WY, Zhang GL. Modulation of antimicrobial host defense peptide gene expression by free fatty acids.PLoS One, 2012, 7(11): e49558DOI:10.1371/journal.pone.0049558. |
[29] | Zeng XF, Sunkara LT, Jiang WY, Bible M, Carter S, Ma X, Qiao SY, Zhang GL. Induction of porcine host defense peptide gene expression by short-chain fatty acids and their analogs.PLoS One, 2013, 8(8): e72922DOI:10.1371/journal.pone.0072922. |
[30] | Li MM, Li GS, Shang QS, Chen XX, Liu W, Pi XE, Zhu LY, Yin YS, Yu GL, Wang X. In vitro fermentation of alginate and its derivatives by human gut microbiota.Anaerobe, 2016, 39: 19–25DOI:10.1016/j.anaerobe.2016.02.003. |
[31] | Li MM, Li GS, Zhu LY, Yin YS, Zhao XL, Xiang C, Yu GL, Wang X. Isolation and characterization of an agaro- oligosaccharide (AO)-hydrolyzing bacterium from the gut microflora of Chinese individuals.PLoS One, 2014, 9(3): e91106DOI:10.1371/journal.pone.0091106. |
[32] | Liu W, Dong SL, Xu F, Wang XQ, Withers TR, Yu HD, Wang X. Effect of intracellular expression of antimicrobial peptide LL-37 on growth of Escherichia coli strain TOP10 under aerobic and anaerobic conditions.Antimicrobial Agents and Chemotherapy, 2013, 57(10): 4707–4716DOI:10.1128/AAC.00825-13. |
[33] | Schroeder BO, Ehmann D, Precht JC, Castillo PA, Küchler R, Berger J, Schaller M, Stange EF, Wehkamp J. Paneth cell α-defensin 6 (HD-6) is an antimicrobial peptide.Mucosal Immunology, 2015, 8(3): 661–671DOI:10.1038/mi.2014.100. |