|
摘要热阻和湿阻是服装热性能的2个主要参数。暖体假人实验是测量热阻和湿阻最常用和最准确的方法之一。目前对热阻和湿阻的实验研究还只是在常温和低温下进行的。该文利用暖体假人“NEWTON”进行实验研究,先后分别测量了2套防护服在室温和高温下的热阻和湿阻。结果表明:高温下并联法计算得到的防护服总热阻比串联法计算得到的小;高温下防护服的总热阻比室温下的大幅减少,两者之间的比值范围约30%~38%;高温下轻型防护服的湿阻比常温下的湿阻小;对重型防护服而言,高温下用质量法得到的湿阻比常温下的低,而用热量法得到的湿阻比常温下高。 |
关键词 :热阻,湿阻,暖体假人,防护服,高温,热辐射 |
Abstract:The thermal insulation and evaporative resistance of clothing are the two main parameters related to clothing thermal comfort and protective ability. These two parameters, that all usually only measured for normal or cold atmospheric conditions, are measured here using a thermal manikin, one a commonly used and accurate method. This paper presents measurements of the thermal insulation and evaporative resistance of two-layer and three-layer protective clothing using the thermal manikin "NEWTON" in normal and hot environments. The tests show that, the parallel resistance method gives lower overall thermal resistances than the serial resistance method in hot environments. The tests also show that the thermal insulation resistances at high temperatures are 30%~38% lower than at normal conditions. The results also show that evaporative resistance of the two-layer clothing in the hot environment is less than for the warm condition and that the evaporative resistance of the three-layer clothing based on the mass loss method at high temperatures is less than in the normal environment, while the evaporative resistance based on the heat loss method in the hot environment is larger than that in the normal environment. |
Key words:thermal insulationevaporative resistancethermal manikinprotective clothinghot environmentthermal radiation |
收稿日期: 2016-12-20 出版日期: 2017-03-25 |
|
通讯作者:翁文国,研究员,E-mail:wgweng@tsinghua.edu.cnE-mail: wgweng@tsinghua.edu.cn |
[1] | Havenith G, Holmer I, Parsons K. Personal factors in thermal comfort assessment:Clothing properties and metabolic heat production[J]. Energy and Buildings, 2002, 34(6):581-591. |
[2] | Holmer I. Protective clothing in hot environments[J]. Industrial Health, 2006, 44(3):404-413. |
[3] | Broede P, Kuklane K, Candas V, et al. Heat gain from thermal radiation through protective clothing with different insulation, reflectivity and vapour permeability[J]. International Journal of Occupational Safety and Ergonomics, 2010, 16(2):231-244. |
[4] | McCullough E. The use of thermal manikins to evaluate clothing and environmental factors[C]//Environmental Ergonomics-The Ergonomics of Human Comfort, Health and Performance in the Thermal Environment. Stockholm, Sweden:Elsevier, 2005:403-407. |
[5] | Wang F, Kuklane K, Gao C, et al. Development and validity of a universal empirical equation to predict skin surface temperature on thermal manikins[J]. Journal of Thermal Biology, 2010, 35(4):197-203. |
[6] | Holmer I. Thermal manikin history and applications[J]. European Journal of Applied Physiology, 2004, 92(6):614-618. |
[7] | Havenith G, Richards M, Wang X, et al. Apparent latent heat of evaporation from clothing:Attenuation and ""heat pipe"" effects[J]. Journal of Applied Physiology, 2008, 104(1):142-149. |
[8] | Oliveira A, Gaspar A, Quintela D. Measurements of clothing insulation with a thermal manikin operating under the thermal comfort regulation mode:Comparative analysis of the calculation methods[J]. European Journal of Applied Physiology, 2008, 104(4):679-688. |
[9] | Celcar D, Meinander H, Gersak J. Heat and moisture transmission properties of clothing systems evaluated by using a sweating thermal manikin under different environmental conditions[J]. International Journal of Clothing Science and Technology, 2008, 20(4):240-252. |
[10] | ISO 9920. Ergonomics of the thermal environment-Estimation of thermal insulation and water vapour resistance of a clothing ensemble[S]. Geneva:International Organization for Standardization, 2009. |
[11] | ASTM F 1291. Standard test method for measuring the thermal insulation of clothing using a heated manikin[S]. West Conshohocken:American Society for Testing and Materials, 2010. |
[12] | Howie R. Assessment of the scientific validity of ISO 7933/EN 12515[C]//1st European Conference on Protective Clothing. Stockholm, Sweden:European Society on Protective Clothing, 2000:163-166. |
[13] | ASTM F 2370. Standard test method for measuring the evaporative resistance of clothing using a sweating manikin[S]. West Conshohocken:American Society for Testing and Materials, 2010. |
[14] | Wang F M, Gao C, Kuklane K, et al. A study on evaporative resistances of two skins designed for thermal manikin tore under different environmental conditions[J]. Journal of Fiber Bioengineering and Informatics, 2009, 1(4):211-215. |
[15] | Song G, Paskaluk S, Sati R, Crown E, et al. Thermal protective performance of protective clothing used for low radiant heat protection[J]. Textile Research Journal, 2011, 81(3):311-323." |
[1] | 张竞宇, 李富, 孙玉良. 球床高温气冷堆初装堆芯的物理计算方法及验证[J]. 清华大学学报(自然科学版), 2017, 57(4): 405-409. | [2] | 胡福生, 张磊, 林峰. 大口径阀门阀体多向模锻成形的模具优化设计[J]. 清华大学学报(自然科学版), 2016, 56(6): 646-649,655. | [3] | 李骁, 杨小勇, 张佑杰. HTR-10GT充装量调节特性及其机理[J]. 清华大学学报(自然科学版), 2015, 55(9): 1010-1016,1022. | [4] | 赵熹, 原鲲, 周羽. GH3128高温拉伸强度设计方法的优化[J]. 清华大学学报(自然科学版), 2015, 55(9): 998-1002. | [5] | 任成, 杨星团, 李聪新, 孙艳飞, 刘志勇. 高温气冷堆球床等效导热系数实验装置模拟计算[J]. 清华大学学报(自然科学版), 2015, 55(9): 991-997. | [6] | 李克俭, 蔡志鹏, 李轶非, 胡梦佳, 潘际銮. 长期高温时效对有碳迁移发生的焊接接头的影响[J]. 清华大学学报(自然科学版), 2015, 55(10): 1051-1055. | [7] | 张伯奇,蔡志鹏,李克俭,潘际銮. 过渡层Cr元素梯度对异种钢接头高温持久性能的影响[J]. 清华大学学报(自然科学版), 2014, 54(6): 828-833. | [8] | 付明,翁文国,袁宏永. 低热辐射强度下防护服热防护性能的实验研究[J]. 清华大学学报(自然科学版), 2014, 54(6): 719-723. | [9] | 郝琛, 李富, 郭炯. 球床式高温气冷堆球流混流的模拟[J]. 清华大学学报(自然科学版), 2014, 54(5): 624-628. | [10] | 张超, 秦挺鑫, 吴甦, 王金玉. 基于暖体假人的热环境下人体安全评价[J]. 清华大学学报(自然科学版), 2014, 54(2): 264-269. |
|