遗传-模拟退火算法优化设计管壳式换热器 |
肖武, 王开锋, 姜晓滨, 贺高红 |
大连理工大学 精细化工国家重点实验室, 大连 116024 |
Optimization of a shell-and-tube heat exchanger based on a genetic simulated annealing algorithm |
XIAO Wu, WANG Kaifeng, JIANG Xiaobin, HE Gaohong |
State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China |
摘要:
| |||
摘要依据Bell-Delaware法对壳程流体进行压降和传热的计算,选择管径、管长、折流挡板数等结构参数作为主要设计变量,参考了美国管式换热器制造商协会(Tubular Exchanger Manufacturers Association, TEMA)标准作为相关约束条件,以换热器的年度总费用最低为目标函数,建立了管壳式换热器优化设计数学模型,并基于遗传-模拟退火算法(GA-SA)进行求解。文献算例的对比结果表明:算法能较好地权衡换热器的换热面积费用和泵的操作费用并搜索到全局最优解,从而获得总费用较低的换热器主要结构参数。针对一个实际工程项目,考虑换热器设计裕度要求,计算结果与商业化软件HTRI的预测值接近,说明所设计的换热器实际可行。同时克服了HTRI需要设计者的经验确定设计变量和无法保证经济性最优的不足。 | |||
关键词 :管壳式换热器,遗传-模拟退火算法(GA-SA),Bell-Delaware法,优化设计 | |||
Abstract:A mathematical model was developed to optimize the design of a shell-and-tube heat exchanger based on design data obtained by using the Bell-Delaware method to describe the pressure drop and heat transfer on the shell-side. The design variables were the tube diameter, the tube length, and other geometric parameters with the Tubular Exchanger Manufacturers Association (TEMA) standard taken as the reference for the constraints and the minimum total heat exchanger cost as the objective. The solution used the genetic simulated annealing algorithm (GA-SA). This method more effectively balances the heat exchanger area cost and pumping cost than previous methods by searching for the global optimal solution for the main geometric heat exchanger parameters with the minimum total cost. With the margin requirement for heat exchanger designs for specific industrial projects, these results are close to those given by commercial HTRI software, which indicates that this heat exchanger design method is reliable. This method guarantees the economic optimum without an empirical method to optimize the design variables in the heat exchanger design which is a major weakness of HTRI software packages. | |||
Key words:shell-and-tube heat exchangergenetic simulated annealing algorithm (GA-SA)Bell-Delaware methoddesign and optimization | |||
收稿日期: 2015-08-30 出版日期: 2016-07-22 | |||
| |||
基金资助:国家自然科学基金资助项目(21206014,21125628);中央高校基本科研业务费专项基金资助项目(DUT14LAB14);中国石油化工股份有限公司资助项目(X514001) |
引用本文: |
肖武, 王开锋, 姜晓滨, 贺高红. 遗传-模拟退火算法优化设计管壳式换热器[J]. 清华大学学报(自然科学版), 2016, 56(7): 728-734. XIAO Wu, WANG Kaifeng, JIANG Xiaobin, HE Gaohong. Optimization of a shell-and-tube heat exchanger based on a genetic simulated annealing algorithm. Journal of Tsinghua University(Science and Technology), 2016, 56(7): 728-734. |
链接本文: |
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2016.24.021或 http://jst.tsinghuajournals.com/CN/Y2016/V56/I7/728 |
图表:
图1 换热器设计内循环流程图 |
表1 管壳式换热器所采用的管子内径和外径 |
图2 基于遗传模拟退火算法优化设计管壳式换热器流程图 |
表2 算例1中冷热流股数据 |
表3 算例1中换热器设计参数与文献的对比 |
表4 算例1中设计结果与文献的对比 |
表5 算例2中冷热流股数据 |
表6 算例2中算法优化后的换热器设计参数 |
表7 算例2中GAGSA 算法对传热和压降的计算结果和HTRI预测结果的对比 |
参考文献:
[1] Yang J, Oh S R, Liu W. Optimization of shell-and-tube heat exchangers using a general design approach motivated by constructal theory[J].International Journal of Heat and Mass Transfer,2014,77(4):1144-1154. [2] Bahadori A. Simple method for estimation of effectiveness in one tube pass and one shell pass counter-flow heat exchangers[J].Applied Energy, 2011,88(11):4191-4196. [3] Fesanghary M, Damangir E, Soleimani I. Design optimization of shell and tube heat exchangers using global sensitivity analysis and harmony search algorithm[J].Applied Thermal Engineering, 2009,29(5):1026-1031. [4] Caputo A C, Pelagagge P M, Salini P. Heat exchanger design based on economic optimisation[J].Applied Thermal Engineering,2008,28(10):1151-1159. [5] Fettaka S, Thibault J, Gupta Y. Design of shell-and-tube heat exchangers using multiobjective optimization[J]. International Journal of Heat and Mass Transfer,2013,60(1):343-354. [6] Babu B V, Munawar S A. Differential evolution strategies for optimal design of shell-and-tube heat exchangers[J].Chemical Engineering Science, 2007,62(14):3720-3739. [7] Serna-González M, Ponce-Ortega J M, Castro-Montoya A J, et al. Feasible design space for shell-and-tube heat exchangers using the Bell-Delaware method[J].Industrial & Engineering Chemistry Research, 2007,46(1):143-155. [8] Mizutani F T, Pessoa F L P, Queiroz E M, et al. Mathematical programming model for heat-exchanger network synthesis including detailed heat-exchanger designs. 1. Shell-and-tube heat-exchanger design[J].Industrial & Engineering Chemistry Research,2003,42(17):4009-4018. [9] Onishi V C, Ravagnani M A S S, Caballero J A. Mathematical programming model for heat exchanger design through optimization of partial objectives[J].Energy Conversion and Management, 2013,74:60-69. [10] Khosravi R, Khosravi A, Nahavandi S. Assessing performance of genetic and firefly algorithms for optimal design of heat exchangers[C]//2014 IEEE International Conference on Systems, Man and Cybernetics (SMC). San Diego, USA:IEEE, 2014:3296-3301. [11] Hadidi A, Nazari A. Design and economic optimization of shell-and-tube heat exchangers using biogeography-based (BBO) algorithm[J].Applied Thermal Engineering, 2013,51(1):1263-1272. [12] ?ahin A ?ç, Kiliç B, Kiliç U. Design and economic optimization of shell and tube heat exchangers using Artificial Bee Colony (ABC) algorithm[J].Energy Conversion and Management, 2011,52(11):3356-3362. [13] Selba? R, Kizilkan Ö, Reppich M. A new design approach for shell-and-tube heat exchangers using genetic algorithms from economic point of view[J].Chemical Engineering and Processing:Process Intensification, 2006,45(4):268-275. [14] Ponce-Ortega J M, Serna-González M, Jiménez-Gutiérrez A. Use of genetic algorithms for the optimal design of shell-and-tube heat exchangers[J].Applied Thermal Engineering,2009,29(2):203-209. [15] Ravagnani M A S S, Silva A P, Biscaia Jr E C, et al. Optimal design of shell-and-tube heat exchangers using particle swarm optimization[J].Industrial & Engineering Chemistry Research, 2009,48(6):2927-2935. [16] Patel V K, Rao R V. Design optimization of shell-and-tube heat exchanger using particle swarm optimization technique[J].Applied Thermal Engineering, 2010,30(11):1417-1425. [17] Khalfe N M, Lahiri K S, Wadhwa K S. Simulated annealing technique to design minimum cost exchanger[J].Chemical Industry and Chemical Engineering Quarterly,2011,17(4):409-427. [18] Lahiri S K, Khalfe N. Improve shell and tube heat exchangers design by hybrid differential evolution and ant colony optimization technique[J].Asia-Pacific Journal of Chemical Engineering, 2014,9(3):431-448. [19] Hadidi A, Hadidi M, Nazari A. A new design approach for shell-and-tube heat exchangers using imperialist competitive algorithm (ICA) from economic point of view[J].Energy conversion and Management,2013,67:66-74. [20] Sinnott R K. Chemical Engineering Design:SI Edition[M]. London, UK:Elsevier, 2009. [21] Ravagnani M, Caballero J A. A MINLP model for the rigorous design of shell and tube heat exchangers using the TEMA standards[J].Chemical Engineering Research and Design, 2007,85(10):1423-1435. [22] Shah R K, Sekulic D P. Fundamentals of Heat Exchanger Design[M]. New York, USA:John Wiley & Sons, 2003. [23] TEMA-2007. Standards of the Tubular Exchanger Manufacturers Association. Tubular Exchanger Manufacturers Association[S]. New York, USA:Tubular Exchanger Manufacturers Association, 2007. [24] WEI Guanfeng, YAO Pingjing, LUO Xing, et al. Study on multi-stream heat exchanger network synthesis with parallel genetic/simulated annealing algorithm[J].Chinese Journal of Chemical Engineering, 2004,12(1):66-77. |
相关文章:
|