删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于有限元仿真的磁感应肿瘤治疗设备线圈优化设计

清华大学 辅仁网/2017-07-07

基于有限元仿真的磁感应肿瘤治疗设备线圈优化设计
武建安1, 吴祖河1, 王亨1, 李利亚2, 唐劲天1
1. 清华大学 工程物理系, 粒子技术与辐射成像教育部重点实验室, 北京 100084;
2. 中日友好医院 中西医结合肿瘤内科, 北京 100029
Optimization of a coil design for magnetic hyperthermia treatment based on the finite element method
WU Jian'an1, WU Zuhe1, WANG Heng1, LI Liya2, TANG Jintian1
1. Key Laboratory of Particle & Radiation Imaging of the Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing 100084, China;
2. Oncology Department of Integrative Medicine, China-Japan Friendship Hospital, Beijing 100029, China

摘要:

输出: BibTeX | EndNote (RIS)
摘要在针对头部肿瘤的线圈式磁感应肿瘤治疗设备设计中,为了提高治疗磁场的强度与均匀度,需要对传统的圆形同轴线圈进行改进。根据临床需求和理论分析,采用D形线圈设计,并通过软件仿真与实际测量加以评估。结果表明:在相同条件下D形线圈与圆形线圈相比其中心磁场强度提高了约5.9%,有效治疗空间增加了约4.6%,设备性能有了一定的提高。线圈电感值的仿真与实际测量结果均符合设备要求。
关键词 肿瘤,磁感应热疗,有限元,电磁场
Abstract:A D-shaped coil improved the magnetic intensity and magnetic field uniformity over a circular coil for tumors in the head. The coil was designed using computer simulations and evaluated in trials with the center magnetic field intensity increased by 5.9%, and the valid treatment space increased by 4.6%. The coil also meets the design requirements.
Key wordstumormagnetic hyperthermiafinite element methodelectromagnetic field
收稿日期: 2015-06-04 出版日期: 2016-05-09
ZTFLH:R730.59
通讯作者:唐劲天,研究员。E-mail:tangjt@mail.tsinghua.edu.cnE-mail: tangjt@mail.tsinghua.edu.cn
引用本文:
武建安, 吴祖河, 王亨, 李利亚, 唐劲天. 基于有限元仿真的磁感应肿瘤治疗设备线圈优化设计[J]. 清华大学学报(自然科学版), 2016, 56(4): 406-410,416.
WU Jian'an, WU Zuhe, WANG Heng, LI Liya, TANG Jintian. Optimization of a coil design for magnetic hyperthermia treatment based on the finite element method. Journal of Tsinghua University(Science and Technology), 2016, 56(4): 406-410,416.
链接本文:
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2016.24.011 http://jst.tsinghuajournals.com/CN/Y2016/V56/I4/406


图表:
图1 串联谐振电路原理图
图2 建立D 形线圈模型与网格化结果
表1 模型组件的电磁学属性值
图3 不同平面上D 形线圈磁场强度分布图
图4 不同轴线上D 形线圈与圆形线圈的磁场强度对比图
表2 线圈电感矩阵
图5 实际D 形线圈的设计与制造


参考文献:
[1] Chikazumi S. Physics of Magnetism[M]. New York, USA:John Wiley & Sons, 1964.
[2] Cherukuri P, Glazer E S, Curley S A. Targeted hyperthermia using metal nanoparticles[J].Advanced Drug Delivery Reviews, 2010, 62(3):339-345.
[3] HUANG Chifang, CHAO Hsuanyi, CHANG Hsunhao, et al. A magnetic induction heating system with multi-cascaded coils and adjustable magnetic circuit for hyperthermia[J].Electromagnetic Biology and Medicine, 2014, 1(1):1-6.
[4] GAO Yu, LIU Yi, XU Chenjie. Magnetic Nanoparticles for Biomedical Applications:From Diagnosis to Treatment to Regeneration[M]. London, UK:Springer, 2014.
[5] Haider S A, Cetas T C, Wait J R, et al. Power absorption in ferromagnetic implants from radiofrequency magnetic fields and the problem of optimization[J].IEEE Transactions on Microwave Theory and Techniques, 1991, 39(11):1817-1827.
[6] Lucia O, Maussion P, Dede E J, et al. Induction heating technology and its applications:Past developments, current technology, and future challenges[J].IEEE Transactions on Industrial Electronics, 2014, 61(5):2509-2520.
[7] 卓子寒, 翟伟明, 蔡东阳, 等. 肿瘤磁感应治疗计划系统适形热疗方法[J]. 清华大学学报:自然科学版, 2014, 54(6):706-710.ZHUO Zihan, ZHAI Weiming, CAI Dongyang, et al. Conformal treatment method for tumor magnetic induction hyperthermia treatment planning system[J].Journal of Tsinghua University:Science and Technology, 2014, 54(6):706-710. (in Chinese)
[8] Stigliano R V, Shubitidze F, Petryk A A, et al. Magnetic nanoparticle hyperthermia:predictive model for temperature distribution[C]//Proceedings of the SPIE BiOS. Bellingham, USA:International Society for Optics and Photonics, 2013:858410-858418.
[9] ZHUO Zihan, WANG Jie, ZHAI Weiming, et al. Numerical modeling and simulation of temperature distribution uncertainty subject to ferromagnetic thermoseeds hyperthermia[J].Chinese Science Bulletin, 2014, 59(12):1317-1325.
[10] 曹欣荣, 蔡东阳, 张晓冬, 等. 基于有限元仿真的肿瘤磁感应治疗设备磁芯仿真与优化[C]//2010两岸四地生物医学工程学术年会论文集. 北京:中国仪器仪表学会医疗仪器分会, 2010:85-90.CAO Xinrong, CAI Dongyang, ZHANG Xiaodong, et al. Simulation and optimization of magnetic core of magnetic induction hyperthermia device based on finite element method[C]//2010 Biomedical Engineering of Four Places Annual Conference Proceedings. Beijing:China Instrument and Control Society, Medical Instrument Branch, 2010:85-90.(in Chinese)
[11] 陈万青, 郑荣寿, 曾红梅, 等. 2011年中国恶性肿瘤发病和死亡分析[J]. 中国肿瘤, 2015, 24(1):1-10.CHEN Wanqing, ZHENG Rongshou, ZENG Hongmei, et al. Report of cancer incidence and mortality in China 2011[J].China Cancer, 2015, 24(1):1-10. (in Chinese)
[12] Omuro A, Deangelis L M. Glioblastoma and other malignant gliomas:A clinical review[J]. Journal of the American Medical Association, 2013, 310(17):1842-1850.
[13] Lee T W. Fighting fire with fire:The revival of thermotherapy for gliomas[J].Anticancer Research, 2014, 34(2):565-574.
[14] YI Guoqing, GU Bin, CHEN Lukui. The safety and efficacy of magnetic nano-iron hyperthermia therapy on rat brain glioma[J].Tumor Biology, 2014, 35(3):2445-2449.
[15] Cano M E, Barrera A, Estrada J C, et al. An induction heater device for studies of magnetic hyperthermia and specific absorption ratio measurements[J].Review of Scientific Instruments, 2011, 82(11):114904-114910.
[16] Tooley M. Electronic Circuits-Fundamentals & Applications[M]. London, UK:Routledge, 2007.
[17] Ramo S, Whinnery J R. Fields and waves in communication electronics[M]. New York, USA:John Wiley & Sons, 2008.
[18] Sharma V K, Patel A S, Sharma A, et al. Design and analysis of magnetic coil for relativistic magnetron[C]//Proceedings of the 2014 International Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV). New York, USA:IEEE, 2014:181-183.
[19] Feynman R P, Leighton R B, Sands M. The Feynman Lectures on Physics 2 Mainly Electromagnetism and Matter[M]. Bergen, USA:Addison-Wesley, 1969.
[20] WU Jian'an, CAI Dongyang, CAO Xinrong, et al. A novel alternating magnetic field measuring device for magnetic induction hyperthermia[C]//Proceedings of the 2013 ICME International Conference on Complex Medical Engineering (CME). New York, USA:IEEE, 2013:219-223.
[21] Bordelon D E, Goldstein R C, Nemkov V S, et al. Modified solenoid coil that efficiently produces high amplitude AC magnetic fields with enhanced uniformity for biomedical applications[J].IEEE Transactions on Magnetics, 2012, 48(1):47-52.
[22] Nemkov V, Goldstein R, Ruffini R, et al. Design study of induction coil for generating magnetic field for cancer hyperthermia research[C]//Proceedings of the International Symposium on Heating by EM Sources. Padua, Italy:International Symposium on Heating by EM Sources, 2010:18-21.
[23] Nieskoski M D, Trembly B S. Comparison of a single optimized coil and a Helmholtz pair for magnetic nanoparticle hyperthermia[J].IEEE Transactions on Biomedical Engineering, 2014, 61(6):1642-1650.
[24] JIAN Linni, SHI Yujun, LIANG Jianing, et al. A novel targeted magnetic fluid hyperthermia system using HTS coil array for tumor treatment[J].IEEE Transactions on Applied Superconductivity, 2013, 23(3):4400104-4400110.


相关文章:
[1]关立文, 杨亮亮, 王立平, 陈学尚, 王耀辉, 黄克. “S”形试件间歇性切削温度场建模与分析[J]. 清华大学学报(自然科学版), 2016, 56(2): 192-199.
[2]贾晓红, 陈华明, 励行根, 王玉明. 石墨垫片密封界面的力学特性[J]. 清华大学学报(自然科学版), 2016, 56(2): 167-170.
[3]孙红梅, 赵菲, 张亚新. 开孔接管对卧式储罐承载能力的影响分析[J]. 清华大学学报(自然科学版), 2016, 56(1): 102-105.
[4]李克俭, 蔡志鹏, 李轶非, 胡梦佳, 潘际銮. 长期高温时效对有碳迁移发生的焊接接头的影响[J]. 清华大学学报(自然科学版), 2015, 55(10): 1051-1055.
[5]郝丽,潘宇东,李波,袁建生. 利用约束方程法计算ITER中GDC电极所受的电磁力[J]. 清华大学学报(自然科学版), 2015, 55(1): 141-144.
[6]卓子寒,翟伟明,蔡东阳,王婕,张晓冬,唐劲天. 肿瘤磁感应治疗计划系统适形热疗方法[J]. 清华大学学报(自然科学版), 2014, 54(6): 706-710.
[7]卓子寒, 王婕, 翟伟明, 王亨, 唐劲天. 热籽介导磁感应热疗稳态温度场仿真[J]. 清华大学学报(自然科学版), 2014, 54(5): 638-642.
[8]张金换, 刘卫国, 李景涛, 赵福全. 行人头型冲击器试验有限元建模及敏感参数分析[J]. 清华大学学报(自然科学版), 2014, 54(3): 294-298.
[9]赵海燕, 徐兴全, 于兴哲, 朱小武. 旋挖钻机钻杆键条焊接接头的残余应力[J]. 清华大学学报(自然科学版), 2014, 54(2): 191-196.
[10]张丰豪, 何榕. 刚体有限元方法改进及其在风力机动力学中的应用[J]. 清华大学学报(自然科学版), 2014, 54(2): 253-258.
[11]蔡东阳, 卓子寒, 王婕, 武建安, 唐劲天. 基于模拟退火算法的磁感应治疗热籽分布[J]. 清华大学学报(自然科学版), 2014, 54(2): 153-158.

相关话题/肿瘤 北京 设计 电磁场 系统