基于GATE仿真的分光法探测器优化设计 |
石涵1, PENG Qiyu2, 许剑锋3, 都东1 |
1. 清华大学 机械工程系, 北京 100084, 中国; 2. 劳伦斯伯克利国家实验室, 伯克利 94720, 美国; 3. 华中科技大学 机械工程学院, 武汉 430074, 中国 |
GATE simulation based light sharing detector optimization |
SHI Han1, PENG Qiyu2, XU Jianfeng3, DU Dong1 |
1. Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China; 2. Lawrence Berkeley National Laboratory, Berkeley 94720, USA; 3. School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China |
摘要:
| |||
摘要基于分光法的晶体阵列解码技术是正电子发射成像系统最为高效的探测器设计方案之一, 但目前基于分光法的晶体阵列解码设计依赖于经验和实验迭代, 晶体解码和分光层设计缺少有效的仿真方法。该文采用了GATE仿真软件, 对分光法的探测器进行建模仿真, 提出了逐列逼近的优化算法对分光层反光片进行长度优化设计, 且对优化仿真中主要参数进行了分析, 并组装4 mm × 4 mm×25 mm、12×12阵列实验模块对所提方法进行验证。实验结果表明: 该基于GATE仿真的优化设计方法能有效实现分光法探测器晶体阵列解码的仿真以及解码斑点均匀分布的反光片长度优化设计。 | |||
关键词 :正电子发射成像,GATE,探测器设计 | |||
Abstract:Crystal array decoding based on light sharing is one of the most efficient detector design schemes. However, detector module design depends heavily on the designer's experience and intuition and is largely based on trial and error. Simulations are needed to study the crystal array decoding and light sharing layer design. The GATE simulation toolkit is used to simulate a light sharing based detector with the reflectors in the light sharing layer then optimized by a column approximation optimization algorithm. Some key parameters in the simulation are then analyzed. The results show that the GATE simulation based optimization method can efficiently optimize the crystal array decoding in a light sharing detector. | |||
Key words:positron emission tomographyGATEdetector design | |||
收稿日期: 2015-02-15 出版日期: 2016-02-17 | |||
| |||
基金资助:国家国际科技合作专项资助项目(2013DFB30270) | |||
通讯作者:都东, 教授, E-mail: dudong@tsinghua.edu.cnE-mail: dudong@tsinghua.edu.cn | |||
作者简介: 石涵(1988—), 男(汉), 四川, 博士研究生。 |
引用本文: |
石涵, PENG Qiyu, 许剑锋, 都东. 基于GATE仿真的分光法探测器优化设计[J]. 清华大学学报(自然科学版), 2016, 56(2): 200-205. SHI Han, PENG Qiyu, XU Jianfeng, DU Dong. GATE simulation based light sharing detector optimization. Journal of Tsinghua University(Science and Technology), 2016, 56(2): 200-205. |
链接本文: |
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2016.22.009或 http://jst.tsinghuajournals.com/CN/Y2016/V56/I2/200 |
图表:
图1 方块形探测器结构 |
图2 分光层反光片设计影响探测器解码图 |
图3 分光法探测器GATE仿真建模 |
图4 分光层反光片长度优化方案 |
图5 GATE仿真分光层优化流程图 |
表1 主要仿真参数 |
表2 反光片调节步长和位置误差容忍对优化速度的影响 |
图6 仿真事件采样数与平均定位误差的关系曲线 |
图7 给定仿真事件采样数时定位误差的概率分布 |
图8 探测器实验模块 |
图9 实验结果与仿真结果对比 |
参考文献:
[1] Casey M, Nutt R. A multicrystal 2-dimensional BGO detector system for position emission tomography [J]. IEEE Transactions on Nuclear Science, 1986, 33: 460-463. [2] Wong W, Yokoyama S, Uribe J, et al. An elongated position sensitive block detector design using the PMT quadrant-sharing configuration and asymmetric light partition [J]. IEEE Transactions on Nuclear Science, 1999, 46: 542-545. [3] Ramirez R, Liu R, Liu J, et al. High-resolution L(Y)SO detectors using PMT-quadrant-sharing for human and animal PET cameras [J]. IEEE Transactions on Nuclear Science, 2008, 55: 862-869. [4] Lee Y, Kim J, Kim K, et al. Performance measurement of PSF modeling reconstruction (True X) on Siemens Biograph TruePoint TrueV PET/CT [J]. Annals of Nuclear Medicine, 2014, 28: 340-348. [5] Daube-Witherspoon M, Surti S, Perkins A, et al. The imaging performance of a LaBr3-based PET scanner [J]. Physics in Medicine and Biology, 2010, 55: 45-64. [6] Geramifar P, Ay M, Shamsaie M, et al. Monte Carlo based performance assessment of four commercial GE discovery PET/CT scanners using GATE [C]//Proc of IEEE Nuclear Science Symposium and Medical Imaging Conference. Dresden, Germany, 2009: 3270-3274. [7] Kuhn A, Surti S, Karp J, et al. Design of a lanthanum bromide detector for time-of-flight PET [J]. IEEE Transactions on Nuclear Science, 2004, 51: 2550-2557. [8] Strul D, Santin G, Lazaro D, et al. GATE (Geant4 application for tomographic emission): A PET/SPECT general-purpose simulation platform [J]. Nuclear Physics B: Proceedings Supplements, 2003, 125: 75-79. [9] Van-der-Laan D, Schaart D, Maas M, et al. Optical simulation of monolithic scintillator detectors using GATE/GEANT4 [J]. Physics in Medicine and Biology, 2010, 55: 1659-1675. [10] Peng H, Olcott P, Spanoudaki V, et al. Investigation of a clinical PET detector module design that employs large-area avalanche photodetectors [J]. Physics in Medicine and Biology, 2011, 56: 3603-3627. [11] Vilardi I, Braem A, Chesi E, et al. Optimization of the effective light attenuation length of YAP:Ce and LYSO:Ce crystals for a novel geometrical PET concept [J]. Nuclear Instruments & Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006, 564: 506-514. [12] Janecek M, Moses W. Simulating scintillator light collection using measured optical reflectance [J]. IEEE Transactions on Nuclear Science, 2010, 57: 964-970. [13] WEI Qingyang, WANG Shi, MA Tianyu, et al. Influence factors of two dimensional position map on photomultiplier detector block designed by quadrant sharing technique [J]. Nuclear Science and Techniques, 2011, 22: 224-229. |
相关文章:
|