删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

针对无切分维吾尔文文本行识别的字符模型优化

清华大学 辅仁网/2017-07-07

针对无切分维吾尔文文本行识别的字符模型优化
姜志威, 丁晓青, 彭良瑞
清华大学 电子工程系, 智能技术与系统国家重点实验室, 清华信息科学与技术国家实验室, 北京 100084
Character model optimization for segmentation-free Uyghur text line recognition
JIANG Zhiwei, DING Xiaoqing, PENG Liangrui
State Key Laboratory of Intelligent Technology and Systems, Tsinghua National Laboratory for Information Science and Technology, Department of Electronic Engineering, Tsinghua University, Beijing 100084, China

摘要:

输出: BibTeX | EndNote (RIS)
摘要基于隐含Markov模型(hidden Markov model, HMM)的无切分文本行识别方法能够利用概率图的思想, 同步完成文本行图像的切分与识别, 避免因字符预切分失败而导致的识别错误, 但对字符模型的设计与训练要求很高, 并且在多字体融合问题中难以提高模型泛化性能。该文通过分析模型状态在图像层面的聚类意义, 先提出基于观测合理聚类的模型结构优化方法, 再提出结构与参数相结合的字符模型优化策略, 最后将其应用于多字体维吾尔文文本行的无切分识别系统。实验结果表明, 该方法能够改善模型的状态分配合理性, 并且在多字体融合问题中提高了模型泛化性能和状态利用效率。
关键词 信息处理,文字识别,隐含Markov模型,统计学习,维吾尔文
Abstract:A text line recognition method was developed without pre-segmentation using a hidden Markov model (HMM) for simultaneously segmenting and recognizing text line images. The algorithm uses a probability graph to reduce recognition error from failed pre-segmentation results. However, the HMM design and training is complicated and the HMM generalization performance can not be easily improved in multi-font texts. Therefore, a character model optimization method with reasonably clustered observations was developed based on the most common HMM state in images. Then, a method was developed to optimize the model structure and parameters together for a multi-font Uyghur text line recognition system. Tests show that this method improves the state allocation, the generalization performance and the state efficiency of the character model for multi-font texts.
Key wordsinformation processingcharacter recognitionhidden Markov model (HMM)statistical learningUyghur
收稿日期: 2015-04-15 出版日期: 2015-09-30
ZTFLH:TP391.4
通讯作者:丁晓青,教授,E-mail:dingxq@tsinghua.edu.cnE-mail: dingxq@tsinghua.edu.cn
引用本文:
姜志威, 丁晓青, 彭良瑞. 针对无切分维吾尔文文本行识别的字符模型优化[J]. 清华大学学报(自然科学版), 2015, 55(8): 873-877,883.
JIANG Zhiwei, DING Xiaoqing, PENG Liangrui. Character model optimization for segmentation-free Uyghur text line recognition. Journal of Tsinghua University(Science and Technology), 2015, 55(8): 873-877,883.
链接本文:
http://jst.tsinghuajournals.com/CN/ http://jst.tsinghuajournals.com/CN/Y2015/V55/I8/873


图表:
图1 HMM 基本原理示意图
图2 结构与参数相结合的字符模型优化策略
表1 THOCR-Uy360数据库的5种字体
表2 各个系统的CRA
表3 各个系统的建模效率
表3 各个系统的建模效率


参考文献:
[1] 王华, 丁晓青, 哈力木拉提. 多字体多字号印刷维吾尔文字符识别 [J]. 清华大学学报(自然科学版), 2004, 44(7): 946-949. WANG Hua, DING Xiaoqing, Halmurat. Multi-font multi-size printed Uyghur character recognition [J]. Journal of Tsinghua University (Science and Technology), 2004, 44(7): 946-949. (in Chinese)
[2] 贾建忠. 脱机印刷体维吾尔文字识别特征选择和分类器设计方法的研究 [D]. 苏州: 苏州大学, 2008.JIA Jianzhong. The Research of feature selection and classifier design for Printed Offline Uygur character recognition [D]. Suzhou: Soochow University, 2008. (in Chinese)
[3] 陈卿. 印刷体维吾尔文识别系统分类识别技术研究 [D]. 新疆: 新疆大学, 2012.CHEN Qing. Classification and Recognition Technology Research in Print Uighur Recognition System [D]. Xinjiang: Xinjiang University, 2012. (in Chinese)
[4] 陆钢锋. 印刷体维吾尔文识别系统识别技术相关研究 [D]. 新疆: 新疆大学, 2013.LU Gangfeng. Recognition Technology Correlational Research in Print Uighur Recognition System [D]. Xinjiang: Xinjiang University, 2013. (in Chinese)
[5] 阿地力·依米提, 刘吉超, 杜力坤·苏来曼. 复杂背景图像中维吾尔文字切分与识别技术的研究 [J]. 新疆师范大学学报(自然科学版), 2014, 33(1): 65-68.Adili Y, LIU Jichao, Dulikum S. Study on Character Segementation and Recognition Technology of Uyghur in Image with complex Background [J]. Journal of Xinjiang Normal University (Natural Sciences Edition), 2014, 33(1): 65-68. (in Chinese)
[6] Zimmermann M, Bunke H. Hidden Markov model length optimization for handwriting recognition systems [C]// Proc of International Workshop on Frontiers in Handwriting Recognition. Niagara on the Lake, Canada: IEEE Press, 2002, 369-374.
[7] Gunter S, Bunke H. Optimizing the Number of States, Training Iterations and Gaussians in an HMM-based Handwritten Word Recognizer [C]// Proc 7th Int Conf on Document Analysis and Recognition. Edinburgh, Scotland, UK: IEEE Press, 2003, 472-476.
[8] JIANG Zhiwei, DING Xiaoqing, PENG Liangrui, et al. Analyzing the information entropy of states to optimize the number of states in an HMM-based off-line handwritten Arabic word recognizer [C]// Proc 21st Int Conf on Pattern Recognition. Tsukuba, Japan: IEEE Press, 2012, 697-700.
[9]Kullback S, Leibler R A. On information and sufficiency [J]. The Annals of Mathematical Statistics, 1951, 22(1): 79-86.
[10]王欢良, 韩纪庆, 郑铁然. 高斯混合分布之间K-L散度的近似计算 [J]. 自动化学报, 2008, 34(5): 529-534.WANG Huanliang, HAN Jiqing, ZHENG Tieran. Approximation of Kullback-Leibler Divergence between Two Gaussian Mixture Distributions [J]. Acta Automatica Sinica, 2008, 34(5): 529-534. (in Chinese)
[11]Bicego M, Murino V, Figueiredo M A T. A sequential pruning strategy for the selection of the number of states in hidden Markov models [J]. Pattern Recognition Letters, 2003, 24(9): 1395-1407.
[12]Fink G A. Markov Models for Pattern Recognition: From Theory to Applications [M]. New York: Springer, 2008.
[13]Clemente I A, Heckmann M, Sagerer M, et al. Multiple sequence alignment based bootstrapping for improved incremental word learning [C]// Proc 35th Int Conf on Acoustics, Speech, and Signal Processing. Dallas, TX, USA: IEEE Press, 2010, 5246-5249.
[14]Young S, Evermann G, Gales M, et al. The HTK Book (for HTK Version 3.4) [M]. Cambridge, UK: Cambridge University, 2009.
[15]Al-Hajj R M. Combining slanted-frame classifiers for improved HMM-based Arabic handwriting recognition [J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2009, 31(7): 1165-1177.
[16]Mahmouda S A, Ahmada I, Al-Khatiba W G, et al. KHATT: An open Arabic offline handwritten text database [J]. Pattern Recognition, 2014, 47(3): 1096-1112.


相关文章:
[1]路海明, 王一娇, 谢朝霞. 基于向量场的深度计算方法[J]. 清华大学学报(自然科学版), 2015, 55(8): 916-920.
[2]杨向东, 芮晓飞, 谢颖. 基于高效Hough变换的圆柱特征检测方法[J]. 清华大学学报(自然科学版), 2015, 55(8): 921-926.
[3]肖熙, 王竞千. 基于网格的语音关键词检索算法改进[J]. 清华大学学报(自然科学版), 2015, 55(5): 508-513.

相关话题/文字 优化 系统 技术 图像