删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

GH3128高温拉伸强度设计方法的优化

清华大学 辅仁网/2017-07-07

GH3128高温拉伸强度设计方法的优化
赵熹, 原鲲, 周羽
清华大学 核能与新能源技术研究院, 先进核能技术协同创新中心, 先进反应堆工程与安全教育部重点实验室, 北京 100084
Optimization of the high temperature tensile strength design method for the GH3128 Alloy
ZHAO Xi, YUAN Kun, ZHOU Yu
Key Laboratory of Advanced Reactor Engineering and Safety of the Ministry of Education, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China

摘要:

输出: BibTeX | EndNote (RIS)
摘要国产镍基高温合金GH3128在高温下具有良好的强度, 有望成为超高温气冷堆(very high temperature reactor, VHTR)核心部件中间换热器(intermediate heat exchanger, IHX)的主要结构材料。该文针对美国机械工程师协会(American Society of Mechanical Engineers, ASME)标准应用于GH3128时无法在全温度段得到一致可靠设计余量的不足, 采用正态分布直接计算的方法, 通过整体多项式、分段多项式以及分段指数这3种拟合方式, 对拉伸性能设计许用值进行了计算。分析结果表明: 针对现有的GH3128拉伸性能数据, 应分别采用分段多项式拟合及分段指数拟合来求抗拉强度和屈服强度的设计许用值, 并且这种方法给出的设计许用值曲线可以在全温度区间给出一致可靠的设计余量, 可作为超高温气冷堆中间换热器结构设计的参考依据。
关键词 超高温气冷堆(VHTR),中间换热器(IHX),GH3128,拉伸强度
Abstract:GH3128, a domestic Ni-based superalloy, has good high-temperature performance and is a promising main structural material for intermediate heat exchangers (IHX) which are the key component in very high temperature reactors (VHTR). The existing American Society of Mechanical Engineers (ASME) standard is shown to be inappropriate. Then, 3 fitting methods (single polynomial fit, 2-step polynomial fit and 2-step exponential fit) are used to calculate the allowable design strengths for the tensile strength. The results show that the 2-step polynomial fit method should be used for the ultimate tensile strength with the 2-step exponential fit method for the yield strength. These design curves give consistent and reliable design margins for the structural design of IHX.
Key wordsvery high temperature reactors (VHTR)intermediate heat exchangers (IHX)GH3128tensile strength
收稿日期: 2015-03-19 出版日期: 2015-11-09
ZTFLH:TL353
通讯作者:原鲲, 副研究员, E-mail: kyuan@mail.tsinghua.edu.cnE-mail: kyuan@mail.tsinghua.edu.cn
引用本文:
赵熹, 原鲲, 周羽. GH3128高温拉伸强度设计方法的优化[J]. 清华大学学报(自然科学版), 2015, 55(9): 998-1002.
ZHAO Xi, YUAN Kun, ZHOU Yu. Optimization of the high temperature tensile strength design method for the GH3128 Alloy. Journal of Tsinghua University(Science and Technology), 2015, 55(9): 998-1002.
链接本文:
http://jst.tsinghuajournals.com/CN/ http://jst.tsinghuajournals.com/CN/Y2015/V55/I9/998


图表:
图1 GH3128拉伸性能
表1 容限系数与容限范围母体比例的对应关系
表2 不同拟合方式SD 值对比
图2 整体多项式拟合的拉伸性能设计许用值曲线
图3 分段多项式拟合的拉伸性能设计许用值曲线
图4 分段指数拟合的拉伸性能设计许用值曲线
图5 拉伸数据与平均曲线偏差直方图


参考文献:
[1] Kim W G, Yin S N, Kim Y W, et al. Creep behaviour and long-term creep life extrapolation of alloy 617 for a very high temperature gas-cooled reactor [J]. Transactions of the Indian Institute of Metals, 2010, 63(2/3): 145-150.
[2] 赵熹. 高温堆中间换热器结构材料初步研究 [D]. 北京: 清华大学, 2014.ZHAO Xi. Preliminary Research on the Structural Material for Intermediate Heat Exchanger of High-Temperature Gas-cooled Reactor [D]. Beijing: Tsinghua University, 2014.(in Chinese)
[3] REN Weiju. Consideration of alloy 617 application in the Gen IV nuclear reactor systems-Part II: Metallurgical property challenges [C]// Proceedings of the ASME 2009 Pressure Vessels and Piping Conference (PVP2009). Prague, Czech Republic: ASME, 2009: 831-844.
[4] SHI Yunbai, YUAN Kun, ZHAO Xi, et al. Study on Comparison between Inconel 617 and GH3128 asCandidates for Intermediate Heat Exchanger [C]// Proceedings of the 2013 21st International Conference on Nuclear Engineering(ICONE21). Chengdu: ASME, 2013, 2: 1-4.
[5] 原鲲, 赵熹, 叶萍等. 对确定GH3128高温拉伸性能设计许用值方法的探究 [J]. 清华大学学报: 自然科学版, 2014, 54(9): 1236-1239. YUAN Kun, ZHAO Xi, YE Ping, et al. Research of methodology for determining high temperature tensile design allowable strengths of Alloy GH3128 [J]. Journal of Tsinghua University: Science and Technology, 2014, 54(9): 1236-1239. (in Chinese)
[6] 冶金工业部钢铁研究院.GH128镍基高温合金 [R]. 北京: 冶金工业部钢铁研究院, 1973.Central Iron & Steel Research Institute. GH128 Ni-based Superalloy [R]. Beijing: Central Iron & Steel Research Institute, 1973.(in Chinese)
[7] 《中国航空材料手册》编辑委员会.中国航空材料手册第2卷[M]. 北京: 中国标准出版社, 2001.Editorial Committee of China Aeronautical Materials Handbook. China Aeronautical Materials Handbook, Vol. 2 [M]. Beijing: China Standards Press, 2001.(in Chinese)
[8] 《高温合金手册》编写组. 高温合金手册 [M]. 北京: 冶金工业出版社, 1972.Writing Group of High Temperature Alloy Manual. High Temperature Alloy Manual [M]. Beijing: Metallurgical Industry Press, 1972.(in Chinese)
[9] 2010 ASME Boiler & Pressure Vessel Code. SectionⅡ, Part D, Properties (Metric) Materials [S]. New York, USA: ASME, 2010.
[10] Sham T L, Eno D R, Jensen K P. Treatment of high temperature tensile data for Alloy 617 and Alloy 230 [C]// Proceedings of the ASME 2008 Pressure Vessels and Piping Division Conference (PVP2008). Chicago, USA, 2008: 767-776.
[11] Kim W G, Yin S N, Park J Y, et al. An improved methodology for determining tensile design strengths of Alloy 617 [J]. Journal of Mechanical Science and Technology, 2012, 26(2): 379-387.
[12] HB5431-1989. 金属材料力学性能数据表达准则 [S]. 北京: 中华人民共和国航空航天工业部, 1989.HB5431-1989. Data Expression of Mechanical Property for Metallic Materials [S]. Beijing: China Ministry of Aeronautical and Astronautical Industry, 1989.(in Chinese)


相关文章:
No related articles found!

相关话题/设计 北京 材料 数据 计算