删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

车辆受垂向强冲击时座椅安全带的防护效果比较分析与锚点位置优化

清华大学 辅仁网/2017-07-07

车辆受垂向强冲击时座椅安全带的防护效果比较分析与锚点位置优化
孙靖譞, 吕振华
清华大学 汽车工程系, 北京 100084
Protection performance simulation and anchoring optimization of seat safety belts of vehicle under vertical intensive shock
SUN Jingxuan, LÜ Zhenhua
Department of Automotive Engineering, Tsinghua University, Beijing 100084, China

摘要:

输出: BibTeX | EndNote (RIS)
摘要针对特种车辆受垂向强冲击时座椅安全带对乘员防护性能问题研究较少的情况,该文应用数值仿真方法分析评价了分别配置5种形式安全带的座椅-乘员系统模型的垂向强冲击响应,在此基础上进行了5点式、6点式安全带的锚点位置优化研究,并分析检验了该优化方案在车辆正面、侧面碰撞工况的防护效果。研究结果量化评价了多点式安全带结构形式差异对乘员防护效果的显著影响,实现了以乘员的垂向冲击防护为主要目标的座椅安全带锚点位置优化分析,对于特种车辆座椅安全带系统的综合优化设计具有技术指导意义。
关键词 特种车辆,垂向强冲击,乘员防护,座椅安全带,优化设计
Abstract:The passenger protection performance of seat belts in special-purpose vehicles subjected to vertical shocks has rarely been studied. This paper describes numerical simulations of the vertical shock response of seat-passenger systems equipped with 5 different types of safety belts. Anchoring systems of 5 or 6 anchor-point belts are optimized to improve the protection under strong performance vertical shocks, and the influences of the anchoring configuration changes for the two types of safety belts also numerically analyzed for frontal and lateral collisions. The results show the remarkable influence of the configuration of multi-anchor-point safety belts on the passenger protection performance and the optimized anchoring systems of safety belts significantly improve the passenger's vertical shock protection. The study gives a comprehensive optimal design method for safety belt systems of special-purpose vehicles.
Key wordsspecial-purpose vehiclevertical intensive shockpassenger protectionsafety beltoptimization
收稿日期: 2016-03-19 出版日期: 2016-12-20
ZTFLH:E923.3
通讯作者:吕振华,教授,E-mail:lvzh@tsinghua.edu.cnE-mail: lvzh@tsinghua.edu.cn
引用本文:
孙靖譞, 吕振华. 车辆受垂向强冲击时座椅安全带的防护效果比较分析与锚点位置优化[J]. 清华大学学报(自然科学版), 2016, 56(12): 1302-1311.
SUN Jingxuan, LÜ Zhenhua. Protection performance simulation and anchoring optimization of seat safety belts of vehicle under vertical intensive shock. Journal of Tsinghua University(Science and Technology), 2016, 56(12): 1302-1311.
链接本文:
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2016.25.041 http://jst.tsinghuajournals.com/CN/Y2016/V56/I12/1302


图表:
1 不同形式的安全带模型
2 座椅—乘员系统模型
3 车身地板垂向冲击速度载荷输入
4 佩戴不同形式安全带的乘员各项响应
5 佩戴4点式安全带的乘员运动过程
1 乘员各项响应峰值
6 安全带与乘员肢体间接触力(约8ms时刻)
7 安全带与乘员之间最大相对垂向位移(约20ms时刻)
2 设计变量的取值范围
3 5点式安全带优化问题部分采样点的设计变量相对值
8 初始设计状态响应面近似模型沿各变量轴的截面线
4 2种安全带优化后的设计变量取值
5 采用优化方案的有限元模型与近似模型的计算结果比较
9 优化设计状态响应面近似模型沿各变量轴的截面线
6 2种安全带优化前、后乘员各项响应峰值对比
10 优化前、后的乘员响应对比
11 正面、侧面碰撞加速度载荷输入
7 2种安全带优化前、后乘员正面、侧面碰撞响应峰值对比


参考文献:
[1] 李铁柱, 李光耀, 高晖, 等.基于可靠性优化的汽车乘员约束系统的性能改进[J].中国机械工程, 2010, 21(8):993-999. LI Tiezhu, LI Guangyao, GAO Hui, et al. Performance improvement of occupant restraint system based on reliability optimization method[J]. China Mechanical Engineering, 2010, 21(8):993-999. (in Chinese)
[2] 万鑫铭, 尹志勇, 孙浩, 等.六点式安全带防护效率试验研究[J]. 汽车技术, 2008(1):50-53.WAN Xinming, YIN Zhiyong, SUN Hao, et al. Study on protection efficiency for 6-point safety belt[J]. Automobile Techonlogy, 2008(1):50-53.(in Chinese)
[3] 董彦鹏, 吕振华. 垂向强冲击载荷下车辆缓冲座椅的安全带系统防护性能分析及优化[J]. 清华大学学报(自然科学版), 2012, 52(7):989-994. DONG Yanpeng, LÜ Zhenhua. Analysis and optimization of protection provided by vehicle anti-shock seat safety belt systems under vertical intensive shock loads[J]. Journal of Tsinghua University (Science & Technology), 2012, 52(7):989-994. (in Chinese)
[4] Hu D, Yang J, Hu M. Full-scale vertical drop test and numerical simulation of a crashworthy helicopter seat/occupant system[J]. International Journal of Crashworthiness, 2009, 14(6):565-583.
[5] DONG Yanpeng, LÜ Zhenhua. Analysis and evaluation of an anti-shock seat with a multi-stage non-linear suspension for a tactical vehicle under a blast load[J]. Journal of Automobile Engineering, 2012, 226(D8):1037-1047.
[6] Mecalog Sarl, Inc. RADIOSS Adult Rigid Body Hybrid Ⅱ 50% Dummy "AERONAUTICS"[M]. Antony:Mecalog Sarl, 2006.
[7] Altair Engineering, Inc. RADIOSS Theory Manual[M]. Troy:Altair Engineering, 2008.
[8] Nocedal J, Wright S. Numerical Optimization[M]. New York:Springer-Verlag, 1999.
[9] Altair Engineering, Inc. Hyper Study Theory Manual[M]. Troy:Altair Engineering, 2008.
[10] 苏成谦, 吕振华, 张群. 轿车车身结构侧向耐撞性的有限元分析[J]. 汽车工程, 2007, 9(11):964-969.SU Chengqian, LÜ Zhenhua, ZHANG Qun. Finite element analysis on the lateral crashworthiness of car body structure[J]. Automotive Engineering, 2007, 9(11):964-969. (in Chinese)"


相关文章:
[1]肖武, 王开锋, 姜晓滨, 贺高红. 遗传-模拟退火算法优化设计管壳式换热器[J]. 清华大学学报(自然科学版), 2016, 56(7): 728-734.
[2]李培元, 顾春伟, 宋寅. 某MW级燃机低压离心压气机优化设计[J]. 清华大学学报(自然科学版), 2015, 55(10): 1110-1116.
[3]韩俊, 温风波, 赵广播. 小展弦比涡轮叶片的弯曲优化设计[J]. 清华大学学报(自然科学版), 2014, 54(1): 102-108.

相关话题/优化 车辆 系统 设计 汽车