删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

考虑舒适性的电动汽车制动意图分类与识别方法

清华大学 辅仁网/2017-07-07

考虑舒适性的电动汽车制动意图分类与识别方法
潘宁, 于良耀, 宋健
清华大学 汽车工程系, 汽车安全与节能国家重点实验室, 北京 100084
Braking intention classification and identification considering braking comfort for electric vehicles
PAN Ning, YU Liangyao, SONG Jian
State Key Laboratory of Automotive Safety and Energy, Department of Automotive Engineering, Tsinghua University, Beijing 100084, China

摘要:

输出: BibTeX | EndNote (RIS)
摘要液压执行机构(HCU)在电动汽车上被广泛用作电液复合制动系统的液压力精确调节机构。为改善制动舒适性,需要采用合适的制动意图分类与识别方法。提出一种以提高舒适性为目的的制动意图分类方法,将制动意图分为常规减速、紧急制动和压力跟随,并根据分类结果控制液压执行机构;提出一种制动意图在线识别方法,用于在制动过程中在线识别制动意图的类别。该方法利用多传感器数据融合,使用神经网络对制动意图进行识别。仿真及试验结果表明,采用所提出的制动意图分类与识别方法后制动舒适性及安全性得以改善。
关键词 制动意图识别,电动汽车,液压执行机构,制动舒适性,主动控制
Abstract:Hydraulic control units (HCUs) are widely used as precise pressure regulators for the composite brakes in electric vehicles. The braking comfort can be improved by appropriate braking intention classification and identification. A braking intention classification method is developed to improve braking comfort that classifies the braking intention as normal deceleration, emergency braking and a pressure following pattern. The pressure control method is then based on the classification results. The on-line braking intention identification method uses multiple sensors and a neural network. Simulations and tests show that the braking comfort and safety are improved by this method.
Key wordsbraking intention identificationelectric vehiclehydraulic control unitbraking comfortactive control
收稿日期: 2015-11-17 出版日期: 2016-10-25
ZTFLH:U463.5
通讯作者:于良耀,副研究员,E-mail:yly@tsinghua.edu.cnE-mail: yly@tsinghua.edu.cn
引用本文:
潘宁, 于良耀, 宋健. 考虑舒适性的电动汽车制动意图分类与识别方法[J]. 清华大学学报(自然科学版), 2016, 56(10): 1097-1103.
PAN Ning, YU Liangyao, SONG Jian. Braking intention classification and identification considering braking comfort for electric vehicles. Journal of Tsinghua University(Science and Technology), 2016, 56(10): 1097-1103.
链接本文:
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2016.22.045 http://jst.tsinghuajournals.com/CN/Y2016/V56/I10/1097


图表:
某种电动汽车制动系统结构方案
BP神经网络结构进行制动意图识别
制动意图在线识别方法
常规减速模式仿真结果
传统制动力控制仿真结果(采用图4工况)
常规减速模式与未采用制动意图识别下电磁阀平均动作次数对比
压力跟随模式仿真结果
紧急制动模式仿真结果
传统制动力控制仿真结果(采用图7工况)
常规减速模式试验结果
10 紧急制动模式试验结果
11 压力跟随模式试验结果


参考文献:
[1] Nakamura E, Soga M, Sakai A, et al. Development of Electronically Controlled Brake System for Hybrid Vehicle [R]. SAE Technical Paper 2002-01-0300, 2002.
[2] Ahn J K, Jung K H, Kim D H. Analysis of a regenerative braking system for hybrid electric vehicles using an electro-mechanical brake [J]. International Journal of Automotive Technology, 2009, 10(2): 229-234.
[3] 王猛, 孙泽昌, 卓桂荣, 等. 电动汽车制动能量回收系统研究[J]. 农业机械学报, 2012, 43(2): 6-10.WANG Meng, SUN Zechang, ZHUO Guirong, et al. Braking energy recovery system for electric vehicle [J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(2): 6-10. (in Chinese)
[4] Albrichsfeld C V, Karner J. Brake System for Hybrid and Electric Vehicles [R]. SAE Technical Paper 2009-01-1217, 2009.
[5] Oshima T, Fujiki N, Nakao S, et al. Development of an Electrically Driven Intelligent Brake System [R]. SAE Technical Paper 2011-01-0568, 2011.
[6] Kunz M, Willmann K H, Wienken H, et al. Modular brake system approach for automated parking and automated driving [C]//5th International Munich Chassis Symposium 2014. Wiesbaden, Germany, 2014: 633-646.
[7] 张彪, 张俊智, 李守波. 基于ESP压力调节器制动能量回馈系统[J]. 清华大学学报: 自然科学版, 2011, 51(5): 710-714.ZHANG Biao, ZHANG Junzhi, LI Shoubo. Regenerative braking system based on ESP pressure modulator [J]. J Tsinghua Univ: Sci and Tech, 2011, 51(5): 710-714.(in Chinese)
[8] Cantoni C, Cesarini R, Mastinu G, et al. Brake comfort: A review [J]. Vehicle System Dynamics, 2009, 47(8): 901-947.
[9] Yoshida H, Sugitani T, Ohta M, et al. Development of the Brake Assist System [R]. SAE Technical Paper 980601, 1998.
[10] Donges E. A conceptual framework for active safety in road traffic [J]. Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility, 1999, 32(2/3): 113-128.
[11] 孙磊. HEV驾驶员制动意图识别及控制算法研究[D]. 长春: 吉林大学, 2012.SUN Lei. Study on Driver Braking Intention Identification and Control Algorithm for HEV [D]. Changchun: Jilin University, 2012. (in Chinese)
[12] 张元才, 余卓平, 徐乐, 等. 基于制动意图的电动汽车复合制动系统制动力分配策略研究[J]. 汽车工程, 2009, 31(3):244-249.ZHANG Yuancai, YU Zhuoping, XU Le, et al. A study on the strategy of braking force distribution for the hybrid braking system in electric vehicles based on braking intention [J]. Automotive Engineering, 2009, 31(3): 244-249. (in Chinese)
[13] GAO Yimin, CHEN Liping, Ehsani M. Investigation of the Effectiveness of Regenerative Braking for EV and HEV [R]. SAE Technical Paper 1999-01-2910, 1999.
[14] 姚亮. 混合动力轿车再生制动与液压制动协调控制策略研究[D]. 长春: 吉林大学, 2009.YAO Liang. Study on the Integrative Control Strategy of Regenerative Braking and Hydraulic Braking for Hybrid Electric Vehicle [D]. Changchun: Jilin University, 2009. (in Chinese)
[15] 李寿涛, 郭立书, 徐辉, 等. 基于模糊逻辑的驾驶员紧急制动意图识别[J]. 仪器仪表学报, 2009, 30(6): 218-221.LI Shoutao, GUO Lishu, XU Hui, et al. Identification of drivers' emergency braking intentions based on fuzzy logic [J]. Chinese Journal of Scientific Instrument, 2009, 30(6): 218-221. (in Chinese)
[16] XU Guoqing, LI Weimin, XU Kun, et al. An intelligent regenerative braking strategy for electric vehicles [J]. Energies, 2011, 4: 1461-1477.
[17] Roody S S. Modeling Drivers' Behavior during Panic Braking for Brake Assist Application, Using Neural Networks and Logistic Regression and a Comparison [R]. SAE Technical Paper 2011-01-2384, 2011.
[18] GAO Yimin, Ehsani M. Electronic Braking System of EV and HEV: Integration of Regenerative Braking, Automatic Braking Force Control and ABS [R]. SAE Technical Paper 2001-01-2478, 2001.
[19] Jones S, Kural E, Knodler K, et al. Optimal energy efficiency, vehicle stability and safety on the OpEneR EV with electrified front and rear axles [M]//Advanced Microsystems for Automotive Applications 2013. Berlin: Springer International Publishing, 2013: 269-284.
[20] 史春朝. BP神经网络算法的改进及其在PID控制中的应用研究[D]. 天津: 天津大学, 2006.SHI Chunzhao. Study on Algorithm Improvement of BP Neural Networks and Its Application in PID Control [D]. Tianjin: Tianjin University, 2006. (in Chinese)
[21] 宗长富, 杨肖, 王畅, 等. 汽车转向时驾驶员驾驶意图辨识与行为预测[J]. 吉林大学学报: 工学版, 2009, 39(1): 27-32.ZONG Changfu, YANG Xiao, WANG Chang, et al. Driving intentions identification and behaviors prediction in car lane change [J]. Journal of Jilin University: Engineering and Technology Edition, 2009, 39(1):27-32. (in Chinese)
[22] 李亚秋, 吴超仲, 马晓凤, 等. 基于EKF学习方法的BP神经网络汽车换道意图识别模型研究[J]. 武汉理工大学学报: 交通科学与工程版, 2013, 37(4): 843-847.LI Yaqiu, WU Chaozhong, MA Xiaofeng, et al. A recognition model for lane change intention based on neural network with EKF algorithm [J]. Journal of Wuhan University of Technology: Transportation Science & Engineering, 2013, 37(4): 843-847. (in Chinese)
[23] Pacejka H B, Bakker E. The magic formula tyre model [J]. Vehicle System Dynamics, 1992, 21(S1): 1-18.
[24] 王伟玮. ESC液压执行单元的动态特性分析与综合仿真平台的建立[D]. 北京: 清华大学, 2011.WANG Weiwei. Dynamics Analysis on Electronic Stability Control System Hydraulic Control Unit and Establishing an Integrated Simulation Platform [D]. Beijing: Tsinghua University, 2011. (in Chinese)


相关文章:
[1]方圣楠, 宋健, 宋海军, 台玉琢, TRUONG Sinh Nguyen. 基于最优控制理论的电动汽车机械式自动变速器换档控制[J]. 清华大学学报(自然科学版), 2016, 56(6): 580-586.
[2]陈红旭, 田光宇. 电机-变速器直连系统换挡过程建模及仿真[J]. 清华大学学报(自然科学版), 2016, 56(2): 144-151.
[3]张雷, 于良耀, 宋健, 张永生, 魏文若. 电动汽车再生制动与液压制动防抱协调控制[J]. 清华大学学报(自然科学版), 2016, 56(2): 152-159.
[4]罗剑,罗禹贡,褚文博,张书玮,李克强. 分布式电动车制/驱动力协调行驶稳定性控制[J]. 清华大学学报(自然科学版), 2014, 54(6): 729-733.

相关话题/控制 液压 汽车 系统 吉林大学