删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

航天器对接的全局渐近稳定控制

清华大学 辅仁网/2017-07-07

航天器对接的全局渐近稳定控制
魏伟1, 左敏1, 苏婷立1, 杜军平2
1. 北京工商大学 计算机与信息工程学院, 北京 100048;
2. 北京邮电大学 计算机学院, 北京 100876
Global asymptotically stable control for spacecraft docking
WEI Wei1, ZUO Min1, SU Tingli1, DU Junping2
1. School of Computer and Information Engineering, Beijing Technology and Business University, Beijing 100048, China;
2. School of Computer Science, Beijing University of Posts and Telecommunications, Beijing 100876, China

摘要:

输出: BibTeX | EndNote (RIS)
摘要与基于推力器对接方式相比, 航天器电磁对接具有无推进剂消耗、无羽流污染、无对接冲击的优势。然而, 航天器对接固有的高度非线性、不确定性以及强耦合性极大地限制了航天器对接控制的性能。该文在远场电磁力模型及Hill模型组成的电磁对接动力学模型的基础上利用非线性变换将非线性电磁对接控制模型线性化, 设计全局稳定控制律; 基于Lyapunov函数获得了航天器电磁对接控制全局渐近稳定的充分条件。仿真结果证实了空间电磁对接控制的有效性。
关键词 电磁对接,非线性控制,全局渐近稳定
Abstract:Spacecraft docking with electromagnetic mechanism has obvious advantages over traditional docking methods, such as no propellant consuming, no plume contamination or docking impact. A dynamic model for electromagnetic docking was employed based on the far-field electromagnetic force model and Hill's model. High nonlinearity, uncertainty and coupling make docking control a challenging work. A transformation was utilized to linearize the nonlinear docking model with a control approach based on Lyapunov function designed for spacecraft docking. Sufficient conditions were obtained for global asymptotical stability with simulations being performed. Both theoretical and numerical results support the proposed control approach.
Key wordselectromagnetic dockingnonlinear controlglobal asymptotical stability
收稿日期: 2014-10-17 出版日期: 2016-01-29
ZTFLH:TP1
引用本文:
魏伟, 左敏, 苏婷立, 杜军平. 航天器对接的全局渐近稳定控制[J]. 清华大学学报(自然科学版), 2016, 56(1): 106-110.
WEI Wei, ZUO Min, SU Tingli, DU Junping. Global asymptotically stable control for spacecraft docking. Journal of Tsinghua University(Science and Technology), 2016, 56(1): 106-110.
链接本文:
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2016.23.016 http://jst.tsinghuajournals.com/CN/Y2016/V56/I1/106


图表:
图1 航天器相对运动示意图
表1 系统参数、控制参数及期望轨迹
图2 对接效果


参考文献:
[1] 尤超蓝, 洪嘉振. 空间交会对接过程的动力学模型与仿真 [J]. 动力学与控制学报, 2004, 2(2): 23-28.YOU Chaolan, HONG Jiazhen. Dynamical model and simulation of rendezvous and docking procedure [J]. Journal of Dynamics and Control, 2004, 2(2): 23-28. (in Chinese)
[2] 张元文, 杨乐平. 空间电磁对接控制问题 [J]. 控制理论与应用, 2010, 27(8): 1069-1074. ZHANG Yuanwen, YANG Leping. The control of spatial electromagnetic docking [J]. Control Theory and Applications, 2010, 27(8): 1069-1074. (in Chinese)
[3] 张元文, 杨乐平. 空间电磁对接的非线性控制 [J]. 控制理论与应用, 2011, 28(8): 1181-1186. ZHANG Yuanwen, YANG Leping. Nonlinear control of space electromagnetic docking [J]. Control Theory and Applications, 2011, 28(8): 1181-1186. (in Chinese)
[4] 张元文, 杨乐平, 朱彦伟, 等. 空间电磁对接的鲁棒协调控制 [J]. 国防科技大学学报, 2011, 33(3): 33-37. ZHANG Yuanwen, YANG Leping, ZHU Yanwei, et al. Coordinated robust control of space electromagnetic docking [J]. Journal of National University of Defense Technology, 2011, 33(3): 33-37. (in Chinese)
[5] Bloom J, Sandhu J, Paulsene M, et al. On orbit autonomous servicing satellite (OASIS) project preliminary design review [D]. University of Washington, 2000.
[6] Ocampo C, Williams J. Electromagnetically guided autonomous docking and separation in microgravity [D]. Department of Aerospace Engineering, University of Texas, 2005.
[7] 王龙, 杨乐平, 许军校. 电磁编队飞行与电磁交会对接关键技术及进展 [J]. 装备指挥技术学院学报, 2009, 20(1): 74-78. WANG Long, YANG Leping, XU Junxiao. The key technology and development of electromagnetic formation flight and electromagnetic rendezvous docking [J]. Journal of the Academy of Equipment Command and Technology, 2009, 20(1): 74-78. (in Chinese)
[8] 张元文, 杨乐平. 空间电磁对接的鲁棒非线性轨迹跟踪控制 [J]. 宇航学报, 2011, 32(7): 1502-1507. ZHANG Yuanwen, YANG Leping. Robust and nonlinear path tracking control of space electromagnetic docking [J]. Journal of Astronautics, 2011, 32(7): 1502-1507. (in Chinese)
[9] Zhang Y W, Yang L P, Zhu Y W, et al. Nonlinear 6-DOF control of spacecraft docking with inter-satellite electromagnetic force [J]. Acta Astronautica, 2012, 77(8): 97-108.
[10] Ahsun U. Dynamics and control of electromagnetic satellite formation [D]. Massachusetts Institute of Technology, 2004.
[11] Neave M D. Dynamic and thermal control of an electromagnetic formation flight testbed [D]. Massachusetts Institute of Technology, 2005.
[12] Khalil H K. Nonlinear Systems (3rd edition) [M]. New Jersey: Prentice Hall, 2002: 124-154.


相关文章:
[1]沈婧楠, 王凌, 王圣尧. 求解分布式置换流水线调度问题的化学反应优化算法[J]. 清华大学学报(自然科学版), 2015, 55(11): 1184-1189,1196.

相关话题/控制 空间 北京 计算机 系统