电控单缸柴油机燃烧室设计与实验研究 |
兰旭东1, 潘春雨2, 周明1 |
1. 清华大学 航天航空学院, 北京 100084; 2. 中航工业金城南京机电液压工程研究中心, 南京 211106 |
Design and tests of a combustion chamber for an electrically controlled, single-cylinder diesel engine |
LAN Xudong1, PAN Chunyu2, ZHOU Ming1 |
1. School of Aerospace Engineering, Tsinghua University, Beijing 100084, China; 2. Nanjing Engineering Institute of Aircraft Systems, Jincheng, AVIC, Nanjing 211106, China |
摘要:
| |||
摘要为了满足发动机动力性、经济性和排放的要求,设计与进气系统和燃油喷射系统相匹配的燃烧室构型至关重要。采用数值模拟和实验验证相结合的方法,对电控单缸柴油机的燃烧室进行设计和优化。参考基准机型的主要结构参数,完成燃烧室结构设计,采用Euler-Lagrange联合仿真法对发动机标定点和扭矩点的性能进行计算,并与实验结果对比;对燃烧室结构进行参数化建模,研究标定点和扭矩点工况下燃烧室缩口比、燃烧室深度、燃烧室内径3个关键结构参数对发动机耗油率和排放的影响。结果表明:Euler-Lagrange联合仿真法满足燃烧室设计要求;在进气系统和燃油喷射系统确定的情况下,燃烧室的3个关键结构参数对发动机性能有显著影响。 | |||
关键词 :柴油机,燃烧室设计,Euler-Lagrange耦合方法,实验研究 | |||
Abstract:The design of a combustion chamber must match the intake air and fuel injection systems to improve the power, specific fuel consumption (SFC) and emissions of diesel engines. Numerical simulations and experimental validations are used to optimize the combustion chamber of an electrically controlled, single-cylinder diesel engine. The power and torque of a single-cylinder diesel engine are predicted using a hybrid Euler-Lagrange method with comparisons to test measurements. A parameterized design is then used to design the combustion chamber. Three key parameters for the re-entrance ratio, depth and inner diameter of the combustion chamber relate to the engine performance (power, torque, SFC and emission). The results show that the hybrid Euler-Lagrange method can be used to design the combustion chamber. The three key parameters strongly affect the engine performance for the given intake air and fuel injection systems. | |||
Key words:diesel enginecombustion chamber designhybrid Euler-Lagrange methodexperimental research | |||
收稿日期: 2015-12-11 出版日期: 2016-10-25 | |||
|
引用本文: |
兰旭东, 潘春雨, 周明. 电控单缸柴油机燃烧室设计与实验研究[J]. 清华大学学报(自然科学版), 2016, 56(10): 1109-1113. LAN Xudong, PAN Chunyu, ZHOU Ming. Design and tests of a combustion chamber for an electrically controlled, single-cylinder diesel engine. Journal of Tsinghua University(Science and Technology), 2016, 56(10): 1109-1113. |
链接本文: |
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2016.22.047或 http://jst.tsinghuajournals.com/CN/Y2016/V56/I10/1109 |
图表:
参考文献:
[1] Beard D. Extension of Lagrangian-Eulerian Spray Modeling: Application to High-Pressure Evaporating Diesel Sprays [R]. SAE Technical Paper 2000-01-1893, 2000. [2] Daniele S. Diesel Nozzle Flow and Spray Formation: Coupled Simulations with Real Engine Validation [D]. Stuttgart: Universität Stuttgart, 2009. [3] Michele B, Carlo G, Francesco M. Coupled Simulation of Nozzle Flow and Spray Formation Using Diesel and Biodiesel for CI Engine Applications [R]. SAE International 2012-01-1267, 2012. [4] Ryo M, Takayuki F, Makoto N. Validation of Diesel Fuel Spray and Mixture Formation from Nozzle Internal Flow Calculation [R]. SAE International 2005-01-2098, 2005. [5] Abani N, Kokjohn S, Park S, et al. An Improved Spray Model for Reducing Numerical Parameter Dependencies in Diesel Engine CFD Simulations [R]. SAE International 2008-01-0970, 2008. [6] 谢茂昭. 内燃机计算燃烧学 [M]. 大连: 大连理工大学出版社, 2005.XIE Maozhao. Computational Combustion Science of IC Engine [M]. Dalian: Dalian University of Technology Press, 2005. (in Chinese) [7] 潘春雨. 新一代单缸柴油机燃烧室设计与优化 [D]. 北京: 清华大学, 2015.PAN Chunyu. Design and Optimization of Combustion Chamber for a New Generation of Single-Cylinder Diesel Engine [D]. Beijing: Tsinghua University, 2015. (in Chinese) [8] 周龙保. 内燃机学 [M]. 3版. 北京:机械工业出版社, 2011.ZHOU Longbao. Internal Combustion Engine [M]. 3rd Ed. Beijing: China Machine Press, 2011. (in Chinese) [9] 王建昕, 帅石金. 汽车发动机原理 [M]. 北京: 清华大学出版社, 2011.WANG Jianxin, SHUAI Shijin. Automotive Engine Principle [M]. Beijing: Tsinghua University Press, 2011. (in Chinese) [10] Shi Y, Reitz R. D. Optimization study of the effects of bowl geometry, spray targeting, and swirl ratio for a heavy-duty diesel engine operated at low and high load [J]. International Journal of Engine Research, 2008, 9: 325-328. [11] Sung W P. Optimization of combustion chamber geometry for stoichiometric diesel combustion using a micro genetic algorithm [J]. Fuel Processing Technology, 2010, 91: 1743-1745. [12] Mobasheri R, PENG Zhijun. Analysis of the Effect of Re-Entrant Combustion Chamber Geometry on Combustion Process and Emission Formation in a HSDI Diesel Engine [R]. SAE International 2012-01-0144, 2012. |
相关文章:
|