基于极大代数的安全系统失效传播分析 |
佘晓丽1, 赵纪元2, 杨健1 |
1. 清华大学电子工程系, 北京 100084; 2. 西安交通大学高端制造装备协同创新中心, 西安 710049 |
Max-plus algebra failure propagation analysis of safety systems |
SHE Xiaoli1, ZHAO Jiyuan2, YANG Jian1 |
1. Department of Electronic Engineering, Tsinghua University, Beijing 100084, China; 2. Collaborative Innovation Center of High-End Manufacturing Equipment, Xi'an Jaotong University, Xi'an 710049, China |
摘要:
| |||
摘要针对多个子系统协同工作的安全系统, 提出基于极大代数的失效传播分析方法。该方法分别针对失效在子系统间的传播过程和控制过程建立模型, 基于极大代数运算规则提出迭代求解公式, 并在此基础上得到失效传播导致的系统危害暴露时间(TSF)。相比其他失效传播模型, 该方法通过失效传播与控制模型的对比发现失效传播机制的非对称特性, 并给出了求解协同系统TSF的方法。通过中国列车控制系统(CTCS)实例分析表明了本方法的有效性。 | |||
关键词 :失效传播,极大代数,安全分析,列车控制系统 | |||
Abstract:A failure propagation analysis method was developed for safety systems having multiple interactive sub-systems. Two models are given based on min-plus and max-plus algebra to describe the failure propagation and control processes. Iterative solutions for both models give the final hazardous output disclosure time for specific failures. Unlike other failure propagation models, this method describes the asymmetry in the failure propagation mechanism and presents a calculational method for the hazardous incident time for interactive safety systems. This method is applied to a conceptual CTCS system to demonstrate its effectiveness. | |||
Key words:failure propagationmax-plus algebrasafety analysistrain control system | |||
收稿日期: 2015-09-16 出版日期: 2016-04-01 | |||
| |||
通讯作者:杨健,教授,E-mail:yangjian_ee@tsinghua.edu.cnE-mail: yangjian_ee@tsinghua.edu.cn |
引用本文: |
佘晓丽, 赵纪元, 杨健. 基于极大代数的安全系统失效传播分析[J]. 清华大学学报(自然科学版), 2016, 56(3): 318-323. SHE Xiaoli, ZHAO Jiyuan, YANG Jian. Max-plus algebra failure propagation analysis of safety systems. Journal of Tsinghua University(Science and Technology), 2016, 56(3): 318-323. |
链接本文: |
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2016.21.023或 http://jst.tsinghuajournals.com/CN/Y2016/V56/I3/318 |
图表:
图1 失效传播过程示意图 |
图2 失效传播属性示意图 |
表1 失效模式分类 |
图3 CTCS系统结构及信息交互示意图 |
参考文献:
[1] Leveson N. Engineering a Safer World:Systems Thinking Applied to Safety[M]. Massachusetts:Mit Press, 2011. [2] Jahanian F, Mok A K. Safety analysis of timing properties in real-time systems[J]. IEEE Transactions on Software Engineering, 1986, 12(9):890-904. [3] Fenelon P, McDermid J A. An integrated tool set for software safety analysis[J]. Journal of Systems and Software, 1993, 21(3):279-290. [4] Leveson N G, Stolzy J L. Safety analysis using Petri nets[J]. IEEE Transactions on Software Engineering, 1987, SE-13(3):386-397. [5] CENELEC. EN 50129 Railway Applications:Safety-related Electronic Systems for Signalling[S]. London, UK:British Standards Institution (BSI), 2003. [6] Baccelli F, Cohen G, Olsder G J, et al. Synchronization and Linearity:An Algebra for Discrete Event Systems[M]. New York, NY, USA:John Wiley & Sons Ltd, 1992. [7] 郑大钟, 赵千川. 离散事件动态系统[M]. 北京:淸华大学出版社, 2001.ZHENG Dazhong, ZHAO Qianchuan. Discrete Event Dynamic Systems[M]. Beijing:Tsinghua University Press, 2001. (in Chinese) [8] Gunawardena J. Min-max functions[J]. Discrete Event Dynamic Systems, 1994, 4(4):377-407. [9] Yedidia J S, Freeman W T, Weiss Y. Understanding belief propagation and its generalizations[J]. Exploring artificial intelligence in the new millennium, 2003, 8:236-239. [10] Goverde R M. A delay propagation algorithm for large-scale railway traffic networks[J]. Transportation Research Part C:Emerging Technologies, 2010, 18(3):269-287. [11] Goverde R M. Railway timetable stability analysis using max-plus system theory[J]. Transportation Research Part B:Methodological, 2007, 41(2):179-201. [12] 张曙光. CTCS-3级列控系统总体技术方案[M]. 北京:中国铁道出版社, 2008.ZHANG Shuguang. CTCS-3 Train Control System Technical Specification[M]. Beijing:China Railway Publishing House, 2008. (in Chinese) [13] Pumfrey D J. The Principled Design of Computer System Safety Analyses[D]. York, UK:University of York, 1999. |
相关文章:
|