磁共振成像系统中梯度放大器前级电源的非线性控制 |
施洪亮, 许劲, 崔彬, 蒋晓华 |
清华大学电机系, 电力电子与电机控制国家重点实验室, 北京 100084 |
Nonlinear control for the front end power supplies of magnetic imaging resonance gradient amplifiers |
SHI Hongliang, XU Jing, CUI Bin, JIANG Xiaohua |
State Key Laboratory of Power Electronics and Electric Machine Control, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China |
摘要:
| |||
摘要为了实现磁共振成像系统中梯度放大器前级电源对负载电流阶跃的高速响应, 提出了一种单电压环非线性PID控制器, 该控制器的控制参数是基于误差变化的指数函数。为了进一步提高性能, 在此非线性PID控制器的基础上, 增加了一个电流内环比例控制器。在一台120 V/30 A的前级电源样机上进行了实验验证, 将这2种控制策略对负载电流阶跃时输出电压动态响应结果与系统的动态物理极限进行了对比。实验结果表明: 所设计的电压电流双闭环非线性控制器比单电压环非线性PID控制器有更好的动态响应性能, 更接近系统的动态物理极限。 | |||
关键词 :前级电源,动态响应,动态物理极限,非线性PID控制,电流模式控制 | |||
Abstract:A nonlinear digital PID single loop control method was developed to improve the dynamic load response of the front end power supply of magnetic imaging resonance (MRI) gradient amplifiers with the controller parameters are based on the exponential functions of the error. The dynamic load response is improved by an inner-loop current controller added to the nonlinear digital PID controller. The two control methods are verified in a 120 V/30 A prototype of the power supply for a step load current change and compared with the dynamic physical limits of the system. The results indicate that the controller has better dynamic performance which is closer to the dynamic physical limits of the system that the original nonlinear PID controller. | |||
Key words:power supplydynamic responsedynamic physical limitsnonlinear PID controlcurrent-mode control | |||
收稿日期: 2016-01-04 出版日期: 2016-04-01 | |||
| |||
通讯作者:蒋晓华,教授,E-mail:jiangxiaohua@tsinghua.edu.cnE-mail: jiangxiaohua@tsinghua.edu.cn |
引用本文: |
施洪亮, 许劲, 崔彬, 蒋晓华. 磁共振成像系统中梯度放大器前级电源的非线性控制[J]. 清华大学学报(自然科学版), 2016, 56(3): 306-311,317. SHI Hongliang, XU Jing, CUI Bin, JIANG Xiaohua. Nonlinear control for the front end power supplies of magnetic imaging resonance gradient amplifiers. Journal of Tsinghua University(Science and Technology), 2016, 56(3): 306-311,317. |
链接本文: |
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2016.21.029或 http://jst.tsinghuajournals.com/CN/Y2016/V56/I3/306 |
图表:
参考文献:
[1] Sabate J, LIU Yunfeng, Wiza M. Power supply with independently regulated multiple outputs[C]//Power Electronics and Applications, European Conference (EPE). Aalborg, Denmark:IEEE Press, 2007:1-8. [2] 李思奇, 蒋晓华. 磁共振成像系统中梯度放大器的控制算法[J]. 清华大学学报(自然科学版), 2011, 51(04):571-576.LI Siqi, JIANG Xiaohua. Control algorithm for gradient amplifiers in magnetic resonance imaging systems[J]. J Tsinghua Univ:Sci and Tech, 2011, 51(04):571-576. (in Chinese) [3] Sabate J, Schutten M, LI Qiming, et al. Resonant power supply for magnetic resonance imaging gradient drivers[C]//Power Electronics Specialist Conference (PESC). Acapulco, Mexico:IEEE Press, 2003:1815-1820. [4] Castilla M, Garcia De Vicuna L, Guerrero J M, et al. Designing VRM hysteretic controllers for optimal transient response[J]. IEEE Transactions on Industrial Electronics, 2007, 54(3):1726-1738. [5] Corradini L, Orietti E, Mattavelli P, et al. Digital hysteretic voltage-mode control for DC-DC converters based on asynchronous sampling[J]. IEEE Transactions on Power Electronics, 2009, 24(1):201-211. [6] 李虹, 尚佳宁, 陈姚, 等. 基于fal函数的非线性PI控制器在DC-DC变换器中的应用[J]. 电工技术学报, 2014, 29(S1):326-331.LI Hong, SHANG JiaNing, CHEN Yao, et al. The applications of nonlinear PI controller based on the fal function in the DC-DC converter[J]. Transactions of China Electrotechnical Society, 2014, 29(S1):326-331. (in Chinese) [7] Arikatla V P, Abu Qahouq J A. Adaptive digital proportional-integral-derivative controller for power converters[J]. IET Power Electronics, 2012, 5(3):341-348. [8] 李崇坚, 郭国晓, 高龙, 等. 电力系统非线性PID励磁控制器[J]. 清华大学学报(自然科学版), 2000, 40(3):48-51.LI Chongjian, GUO GuoXiao, GAO Long, et al. Nonlinear PID exciting controller for power system[J]. J Tsinghua Univ:Sci and Tech, 2000, 40(03):48-51. (in Chinese) [9] Meyer E, Zhang Z, Liu Y. An optimal control method for Buck converters using a practical capacitor charge balance technique[J]. IEEE Transactions on Power Electronics, 2008, 23(4):1802-1812. [10] Corradini L, Babazadeh A, Bjeleti? A, et al. Current-limited time-optimal response in digitally controlled DC-DC converters[J]. IEEE Transactions on Power Electronics, 2010, 25(11):2869-2880. [11] Yousefzadeh V, Babazadeh A, Ramachandran B, et al. Proximate time-optimal digital control for synchronous Buck DC-DC converters[J]. IEEE Transactions on Power Electronics, 2008, 23(4):2018-2026. [12] Pitel G E, Krein P T. Minimum-time transient recovery for DC-DC converters using raster control surfaces[J]. IEEE Transactions on Power Electronics, 2009, 24(12):2692-2703. [13] Bibian S, Jin H. High performance predictive dead-beat digital controller for DC power supplies[J]. IEEE Transactions on Power Electronics, 2002, 17(3):420-427. [14] Saggini S, Stefanutti W, Tedeschi E, et al. Digital deadbeat control tuning for DC-DC converters using error correlation[J]. IEEE Transactions on Power Electronics, 2007, 22(4):1566-1570. [15] 吴忠, 刘朝辉. 基于电流模式的DC/DC升压变换器非线性PI控制[J]. 中国电机工程学报, 2011,31(33):31-36. WU Zhong, LIU Chaohui. Nonlinear PI control of DC/DC boost power converters based on current mode[J].Proceedings of the CSEE, 2011,31(33):31-36. (in Chinese) [16] Galiano Zurbriggen I, Ordonez M, Anun M. Dynamic physical limits of buck converters:the T0/4 transient benchmark rule[C]//Applied Power Electronics. Conference and Exposition (APEC). Long Beach, CA, USA:IEEE Press, 2013:421-428. [17] SHI Hongliang, CUI Bin, ZENG Yingyu, et al. Dynamic physical limits of a phase-shifted full bridge circuit for power supply of magnetic imaging resonance gradient amplifiers[C]//Annual Conference of the IEEE Industrial Electronics Society (IECON). Yokohama, Japan:IEEE Press, 2015:4900-4904. |
相关文章:
|