电动汽车再生制动与液压制动防抱协调控制 |
张雷1, 于良耀1, 宋健1, 张永生2, 魏文若2 |
1. 清华大学 汽车工程系, 北京 100084; 2. 中国第一汽车股份有限公司 技术中心, 长春 130011 |
Coordinated anti-lock braking control of regenerative and hydraulic braking systems in electric vehicles |
ZHANG Lei1, YU Liangyao1, SONG Jian1, ZHANG Yongsheng2, WEI Wenruo2 |
1. Department of Automotive Engineering, Tsinghua University, Beijing 100084, China; 2. R&D Center, China FAW Corporation, Changchun 130011, China |
摘要:
| |||
摘要为了保证电动汽车防抱制动过程的稳定性并充分利用电机控制精确、响应迅速的优势, 提出一种基于路面附着的电动汽车再生制动与液压制动防抱协调控制策略。以分布式驱动电动汽车为研究对象, 利用电机扭矩和轮缸制动液压压力可实时测量的优势, 根据车辆动力学估计路面附着; 针对高、中、低3种路面附着采用不同的再生制动与液压制动协调控制策略, 并提出了再生制动退出过程中的协调机制。对该策略的仿真结果表明: 该协调控制策略可以在制动过程中兼顾制动稳定性和能量回收效率, 再生制动退出过程协调机制可以减小液压制动的压力波动, 有利于提高车辆的制动稳定性和舒适性。 | |||
关键词 :电动汽车,再生制动,协调控制,防抱控制 | |||
Abstract:A coordinated control system is developed for the regenerative and hydraulic braking systems in electric vehicles based on a tire-road adhesion model to ensure the stability of electric vehicles with anti-lock braking using motor control accuracy and fast response. The system is designed for a distributed drive electric vehicle with the tire-road adhesion estimated according to the vehicle dynamics. The system measures the motor torque and the wheel cylinder braking pressure. Different coordinated control strategies are given for three tire-road adhesion levels with a coordination mechanism that stops the regenerative braking during anti-lock braking control. Simulations show that this strategy improves both the braking stability and the regenerative energy efficiency during braking. The regenerative braking control reduces the hydraulic braking pressure fluctuations and improves braking stability and comfort. | |||
Key words:electric vehicleregenerative brakingcoordinated controlanti-lock braking control | |||
收稿日期: 2014-06-28 出版日期: 2016-02-17 | |||
| |||
基金资助:国家“八六三”高技术项目(2012AA111204,2011AA11A253); 国家“九七三”重点基础研究发展计划(2011CB711205) | |||
通讯作者:于良耀, 副研究员, E-mail: yly@tsinghua.edu.cnE-mail: yly@tsinghua.edu.cn | |||
作者简介: 张雷(1987—), 男(汉), 河北, 博士研究生。 |
引用本文: |
张雷, 于良耀, 宋健, 张永生, 魏文若. 电动汽车再生制动与液压制动防抱协调控制[J]. 清华大学学报(自然科学版), 2016, 56(2): 152-159. ZHANG Lei, YU Liangyao, SONG Jian, ZHANG Yongsheng, WEI Wenruo. Coordinated anti-lock braking control of regenerative and hydraulic braking systems in electric vehicles. Journal of Tsinghua University(Science and Technology), 2016, 56(2): 152-159. |
链接本文: |
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2015.22.018或 http://jst.tsinghuajournals.com/CN/Y2016/V56/I2/152 |
图表:
参考文献:
[1] HUANG Xiaoyu, WANG Junmin. Model predictive regenerative braking control for lightweight electric vehicles with in-wheel motors [J]. Journal of Automobile Engineering, 2012, 226(9): 1220-1232. [2] Zhang J, Kong D, Chen L, et al. Optimization of control strategy for regenerative braking of an electrified bus equipped with an anti-lock braking system [J]. Journal of Automobile Engineering, 2012, 226(4): 494-506. [3] Peng D, Zhang Y, Yin C, et al. Combined control of a regenerative braking and antilock braking system for hybrid electric vehicles [J]. International Journal of Automotive Technology, 2008, 9(6): 749-757. [4] Rosenberger M, Uhlig R, Koch T, et al. Combining Regenerative Braking and Anti-Lock Braking for Enhanced Braking Performance and Efficiency [R]. SAE Technical Paper, 2012-01-0234, 2012. [5] Sakai S, Hori Y. Advantage of electric motor for anti-skid control of electric vehicle [J]. EPE Journal, 2001, 11(4): 26-32. [6] 赵国柱, 滕建辉, 魏民祥, 等. 基于模糊控制的电动汽车低速再生ABS研究 [J]. 中国机械工程, 2012, 23(1): 117-122.ZHAO Guozhu, TENG Jianhui, WEI Minxiang, et al. Study on low-speed regenerative braking of electric vehicle as ABS based on fuzzy control [J]. China Mechanical Engineering, 2012, 23(1): 117-122. (in Chinese) [7] ZHOU Yong, LI Shengjin, FANG Zongde, et al. Control strategy for ABS of EV with independently controlled four in-wheel motors [C]//4th IEEE Conference on Industrial Electronics and Applications. Xi'an, China: IEEE Press, 2009: 2471-2476. [8] 杨亚娟, 赵韩, 李维汉, 等. 电动汽车再生制动与液压ABS系统集成控制研究[J]. 合肥工业大学学报: 自然科学版, 2012, 35(8): 1054-1058.YANG Yajuan, ZHAO Han, LI Weihan, et al. Integrated control of regenerative braking and hydraulic anti-lock braking system of electric vehicle [J]. Journal of Hefei University of Technology: Science and Technology, 2012, 35(8): 1054-1058. (in Chinese) [9] 周磊, 罗禹贡, 李克强, 等. 电动汽车回馈制动与防抱死制动集成控制[J]. 清华大学学报: 自然科学版, 2009, 49(5): 728-732.ZHOU Lei, LUO Yugong, LI Keqiang, et al. Braking control of electric vehicles while coordinating regenerative and anti-lock brakes [J]. Journal of Tsinghua University: Science and Technology, 2009, 49(5): 728-732. (in Chinese) [10] ZHU Hao, YU Zhuoping, XIONG Lu, et al. An Anti-Lock Braking Control Strategy for 4WD Electric Vehicle Based on Variable Structure Control [R]. SAE Technical Paper, 2013-01-0717, 2013. [11] Khatun P, Bingham C, Schofield N, et al. Application of fuzzy control algorithms for electric vehicle antilock braking/traction control systems [J]. IEEE Transactions on Vehicular Technology, 2003, 52(5): 1356-1364. [12] Zhang J, Chen X, Zhang P. Integrated control of braking energy regeneration and pneumatic anti-lock braking [J]. Journal of Automobile Engineering, 2010, 224(5): 587-610. [13] 王吉. 电动轮汽车制动集成控制策略与复合ABS控制研究[D]. 长春: 吉林大学, 2011.WANG Ji. Study on Brake Integrated Control Strategy and Composite ABS Control for Electric-Wheel Vehicle [D]. Changchun, China: Jilin University, 2011. (in Chinese) [14] Pacejka H B, Bakker E. The magic formula tyre model [J]. Vehicle System Dynamics, 1992, 21(S1): 1-18. [15] 李文. 基于目标优化的四轮驱动电动汽车转矩分配策略研究[D]. 成都: 电子科技大学, 2013.LI Wen. Four-Wheel Drive Electric Vehicles Torque Distribution Strategy Based on Objective Optimization [D]. Chengdu, China: University of Electronic Science and Technology of China, 2013. (in Chinese) [16] Furukawa N, Handa K, Kawai N, et al. Regenerative Braking Control System for Electric Vehicle [P]. USA: Patent 6033041. 2000-03-07. [17] ZHANG Jianlong, YIN Chengliang, ZHANG Jianwu. Design and analysis of electro-mechanical hybrid anti-lock braking system for hybrid electric vehicle utilizing motor regenerative braking [J]. Journal of Mechanical Engineering, 2009, 22(1): 42-49. |
相关文章:
|