删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于车辆变形深度的汽车安全有效性的评价与预测方法

清华大学 辅仁网/2017-07-07

基于车辆变形深度的汽车安全有效性的评价与预测方法
陈龙1, Robert Zobel1,2, 李克强1, 王宏雁2, 陈君毅2
1. 清华大学 汽车安全与节能国家重点实验室, 北京 100084;
2. 同济大学 汽车学院, 上海 200092
Method to evaluate safety enhancement of the past and methodology to predict future enhancement based on vehicle deformation depth
CHEN Long1, Robert Zobel1,2, LI Keqiang1, WANG Hongyan2, CHEN Junyi2
1. State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China;
2. School of Automotive Engineering, Tongji University, Shanghai 200092, China

摘要:

输出: BibTeX | EndNote (RIS)
摘要事故数据库中的速度信息需要用基于能量守恒的事故再现方法来计算得到, 而不同车辆的刚度差异很难估计, 这导致所计算出的速度存在误差。这个问题直接影响到大部分用于估算驾驶员辅助系统有效性的方法的合理性, 因为这些方法需要使用事故所涉及的车辆的速度信息。该文提出了基于车辆变形深度的汽车安全有效性的评价与预测方法。通过分析德国事故数据, 证明了车辆变形深度相比于速度变化量能够更真实地反映事故严重程度。基于变形深度计算了过去30年汽车安全有效性的提高程度, 与历史数据吻合较好, 验证了基于变形深度的安全有效性评价方法的合理性。该文阐述了基于变形深度的驾驶员辅助系统安全有效性预测方法的思路。该预测方法仅需要事故数据库中准确的变形深度信息, 能够获得更多的事故数据支持, 从而可以更好地评价驾驶员辅助系统。
关键词 安全有效性评价,驾驶员辅助系统,车辆变形指数,事故再现
Abstract:Accident velocity information is difficult to obtain with accident reconstruction used to compute velocities, primarily using energy-based estimates. However, the different stiffnesses of the vehicles are difficult to estimate, which leads to significant uncertainty in the computed velocity. This is a major problem because most approaches for estimating the effect of driver assistant systems need the velocities of the involved vehicles. A method is given here to evaluate past safety enhancements to predict future enhancement based on the vehicle deformation depth. Analyses of German accident data show that for vehicles of significantly different stiffnesses, the vehicle deformation depth more truly reflects the severity of the accident than the velocity change. Vehicle safety enhancements over the past 30 years are then calculated based on the deformation depth. The results are in good agreement with historical data, which verifies the safety enhancement evaluation method using deformation depth information. A deformation-depth-based safety impact prediction method is also given for driver assistance systems. This prediction method uses the accurate deformation depth information in the accident database to improve evaluations of driver assistance systems.
Key wordssafety impact evaluationdriver assistance systemvehicle deformation indexaccident reconstruction
收稿日期: 2015-07-15 出版日期: 2016-02-17
ZTFLH:U461.91
通讯作者:李克强, 教授, E-mail: likq@tsinghua.edu.cnE-mail: likq@tsinghua.edu.cn
作者简介: 陈龙(1989—), 男(汉), 河北, 博士研究生。
引用本文:
陈龙, Robert Zobel, 李克强, 王宏雁, 陈君毅. 基于车辆变形深度的汽车安全有效性的评价与预测方法[J]. 清华大学学报(自然科学版), 2016, 56(2): 124-129.
CHEN Long, Robert Zobel, LI Keqiang, WANG Hongyan, CHEN Junyi. Method to evaluate safety enhancement of the past and methodology to predict future enhancement based on vehicle deformation depth. Journal of Tsinghua University(Science and Technology), 2016, 56(2): 124-129.
链接本文:
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2016.22.002 http://jst.tsinghuajournals.com/CN/Y2016/V56/I2/124


图表:
图1 不同年份制造的车辆里系安全带的乘员数目
图2 前撞车辆变形分布
图3 在不同VDI6级别下的平均速度变化量
图4 不同的年份内制造的汽车的平均速度变化
图5 两个年份区间汽车在不同VDI6级别下的百分比和有效性
图6 累积VDI6的损伤风险分布
图7 2001—2011年间相比于1981—1995年间减少损伤的有效性的提升
图8 考虑了刚度增加后的2001—2011年间相对于1981—1995年间减少损伤的有效性的提升


参考文献:
[1] Eriksson H, Jacobson J, Hérard J. ActiveTest-121214- D34-V30-FINAL [R]. European Community's 7th Framework Programme, 2013.
[2] Becker H, Busch S, Zobel R. Methods for the evaluation of primary safety measures by means of accident research [C]//30th FISITA World Automotive Congress. Barcelona, 2004.
[3] Fildes B, Keall M, Thomas P, et al. Evaluation of the benefits of vehicle safety technology: The MUNDS study [J]. Accident Analysis & Prevention, 2013, 55: 274-281.
[4] Burgett A, Srinivasan G, Ranganathan R. A Methodology for Estimating Potential Safety Benefits for Pre-Production Driver Assistance Systems, DOT HS 810945 [R]. Washington DC: National Highway Traffic Safety Administration, 2008.
[5] Bálint A, Fagerlind H, Kullgren A. A test-based method for the assessment of pre-crash warning and braking systems [J]. Accident Analysis & Prevention, 2013, 59: 192-199.
[6] Lee J D, McGehee D V, Brown T L, et al. Collision warning timing, driver distraction, and driver response to imminent rear-end collisions in a high-fidelity driving simulator [J]. Human Factors, 2002, 44(2): 314-334.
[7] Aoki H, Aga M, Miichi Y, et al. Safety Impact Methodology (SIM) for Effectiveness Estimation of a Precollision System (PCS) by Utilizing Driving Simulator Test and EDR Data Analysis [R]. SAE Technical Paper 2010-01-1003, 2010.
[8] Brännström M, Coelingh E, Sjöberg J. Model-based threat assessment for avoiding arbitrary vehicle collisions [J]. IEEE Transactions on Intelligent Transportation Systems, 2010, 11(3): 658-669.
[9] Kim T, Jeong H. Crash probability and error rates for head-on collisions based on stochastic analyses [J]. IEEE Transactions on Intelligent Transportation Systems, 2010, 11(4): 896-904.
[10] Siegel A W. The Vehicle Deformation Index: A Report from the International Ad Hoc Committee for Collision Deformation and Trauma Indices [R]. Los Angeles, CA: School of Medicine, University of California at Los Angeles, 1969.
[11] Niehoff P, Gabler H C. The accuracy of winsmash delta-V estimates: The influence of vehicle type, stiffness, and impact mode [J]. Annu Proc Assoc Adv Automot Med, 2006, 50: 73-89.
[12] Jones I S, Champion H R. Trauma triage: Vehicle damage as an estimate of injury severity [J]. Journal of Trauma, 1989, 29(5): 646-653.


相关文章:
[1]柳长春, 都东, 潘际銮. 基于小偏差模型预测的车道保持辅助控制[J]. 清华大学学报(自然科学版), 2015, 55(10): 1087-1092.

相关话题/车辆 汽车 系统 信息 制造