3.华北电力大学水利与水电工程学院,北京 102206
1.School of Energy and Environmental Engineering, Hebei University of Engineering, Handan 056038, China
3.School of Water Resources and Hydropower Engineering, North China Electric Power University, Beijing 102206, China
为分析不同填埋龄的垃圾渗滤液中有机物的组分特征及臭氧氧化对其结构的影响,选取成熟和年轻的垃圾渗滤液,利用液相色谱-有机碳-有机氮-紫外吸收(LC-OCD-OND-UVD)、紫外可见光谱、三维荧光光谱和树脂分离技术表征了不同填埋龄垃圾渗滤液中有机物的组分特征。结果表明:在2种垃圾渗滤液有机物中,主要组分为以类富里酸为代表的憎水性腐殖质类和亲水的中性小分子有机化合物,且其组分比例随着填埋龄增加可分别提高至60%和28%。年轻渗滤液中的高含量生物多聚物组分(BP)是其最显著特征。臭氧氧化可快速分解BP并最终生成类腐殖质的分解产物,但TOC去除率<10%。对于含量低于4%的腐殖质类小分子酸,因其含氮杂环结构成为最难矿化的有机物,故较低臭氧投加量无法将其氧化分解。LC-OCD-OND-UVD结合其他表征方法印证分析是获取有机物信息的有效手段,可为深入了解有机物的氧化分解过程提供参考。
The mature and young landfill leachates were selected to analyze the characteristics of organic matters and the effect of ozonation on its structure. The size-exclusion with organic carbon detection, organic nitrogen detection and ultraviolet visible detection (LC-OCD-OND-UVD), UV-vis spectrum, three-dimensional fluorescence spectrum and resin separation technology were used to investigate the characteristics of the organic matters in different landfill leachate. The results showed that the hydrophobic humics represented by fulvic-like substances and the hydrophilic low molecular neutral organics were the main components of the organic matters in two types of landfill leachate. The proportions of the components increased to 60% and 28% with the increase of landfill age, respectively. The significant characteristic of the organic matter in the young leachate was the high content (28%) of biopolymer (BP) component. Most of the BP could be decomposed by ozonation and some of humic-like organic matter was generated simultaneously. However, only low removal rates (<10%) of the total organic carbon (TOC) occurred. The small molecular weight humics-like acid (LMWA) with heterocyclic structure containing nitrogen was the most difficult to be mineralized, thus it cannot be decomposed at low ozone dosage. The combination of LC-OCD-OND-UVD with other methods is an effective strategy for the characterization of the complicated organic components in landfill leachate. This provides a new perspective for the further understanding of ozonation process of organic matter.
.
Chromatogram of landfill leachate
垃圾渗滤液中基于有机碳的不同有机物组分比例
Proportions of different components in the DOM based on organic carbon in landfill leachate
Three-dimensional fluorescence spectra of DOM in landfill leachate
Ultraviolet visible spectrum of landfill leachate
DOM components in landfill leachate
Three-dimensional fluorescence spectra of DOM components in landfill leachate comprises
Effect of ozonation on the organics in landfill leachate
Chromatogram of landfill leachate
[1] | YU M, XI B, ZHU Z, et al. Fate and removal of aromatic organic matter upon a combined leachate treatment process[J]. Chemical Engineering Journal, 2020, 401: 126157. doi: 10.1016/j.cej.2020.126157 |
[2] | SILVA T F C V, VIEIRA E, LOPES A R, et al. How the performance of a biological pre-oxidation step can affect a downstream photo-Fenton process on the remediation of mature landfill leachates: Assessment of kinetic parameters and characterization of the bacterial communities[J]. Separation and Purification Technology, 2017, 175: 274-286. doi: 10.1016/j.seppur.2016.11.011 |
[3] | MüLLER G T, GIACOBBO A, DOS SANTOS CHIARAMONTE E A, et al. The effect of sanitary landfill leachate aging on the biological treatment and assessment of photoelectrooxidation as a pre-treatment process[J]. Waste Management, 2015, 36: 177-183. doi: 10.1016/j.wasman.2014.10.024 |
[4] | ISKANDER S M, ZHAO R, PATHAK A, et al. A review of landfill leachate induced ultraviolet quenching substances: Sources, characteristics, and treatment[J]. Water Research, 2018, 145: 297-311. doi: 10.1016/j.watres.2018.08.035 |
[5] | ZHAO R, GUPTA A, NOVAK J T, et al. Evolution of nitrogen species in landfill leachates under various stabilization states[J]. Waste Management, 2017, 69: 225-231. doi: 10.1016/j.wasman.2017.07.041 |
[6] | 贾陈忠, 王焰新, 张彩香, 等. 垃圾渗滤液中溶解性有机物组分的三维荧光特性[J]. 光谱学与光谱分析, 2012, 32(6): 1575-1579. doi: 10.3964/j.issn.1000-0593(2012)06-1575-05 |
[7] | HUO S, XI B, YU H, et al. Characteristics of dissolved organic matter (DOM) in leachate with different landfill ages[J]. Journal of Environmental Sciences, 2008, 20(4): 492-498. doi: 10.1016/S1001-0742(08)62085-9 |
[8] | ZHANG C, LIU J, YANG X, et al. Degradation of refractory organics in biotreated landfill leachate using high voltage pulsed discharge combined with TiO2[J]. Journal of Hazardous Materials, 2017, 326: 221-228. doi: 10.1016/j.jhazmat.2016.12.034 |
[9] | YANG X, MENG L, MENG F. Combination of self-organizing map and parallel factor analysis to characterize the evolution of fluorescent dissolved organic matter in a full-scale landfill leachate treatment plant[J]. Science of the Total Environment, 2019, 654: 1187-1195. doi: 10.1016/j.scitotenv.2018.11.135 |
[10] | BALLESTEROS S G, COSTANTE M, VICENTE R, et al. Humic-like substances from urban waste as auxiliaries for photo-Fenton treatment: A fluorescence EEM-PARAFAC study[J]. Photochemistry Photobiology Science, 2017, 16(1): 38-45. doi: 10.1039/C6PP00236F |
[11] | JUNG C, DENG Y, ZHAO R, et al. Chemical oxidation for mitigation of UV-quenching substances (UVQS) from municipal landfill leachate: Fenton process versus ozonation[J]. Water Research, 2017, 108: 260-270. doi: 10.1016/j.watres.2016.11.005 |
[12] | LU F, CHANG C, LEE D, et al. Dissolved organic matter with multi-peak fluorophores in landfill leachate[J]. Chemosphere, 2009, 74(4): 575-582. doi: 10.1016/j.chemosphere.2008.09.060 |
[13] | AFTAB B, HUR J. Unraveling complex removal behavior of landfill leachate upon the treatments of Fenton oxidation and MIEX? via two-dimensional correlation size exclusion chromatography (2D-CoSEC)[J]. Journal of Hazardous Materials, 2019, 362: 36-44. doi: 10.1016/j.jhazmat.2018.09.017 |
[14] | 席北斗, 何小松, 赵越, 等. 填埋垃圾稳定化进程的光谱学特性表征[J]. 光谱学与光谱分析, 2009, 29(9): 2475-2479. |
[15] | HUBER S A, BALZ A, ABERT M, et al. Characterisation of aquatic humic and non-humic matter with size-exclusion chromatography-organic carbon detection-organic nitrogen detection (LC-OCD-OND)[J]. Water Research, 2011, 45(2): 879-885. doi: 10.1016/j.watres.2010.09.023 |
[16] | ZHANG X, GUO J, WANG L, et al. In situ ozonation to control ceramic membrane fouling in drinking water treatment[J]. Desalination, 2013, 328: 1-7. doi: 10.1016/j.desal.2013.08.010 |
[17] | HE W, HUR J. Conservative behavior of fluorescence EEM-PARAFAC components in resin fractionation processes and its applicability for characterizing dissolved organic matter[J]. Water Research, 2015, 83: 217-226. doi: 10.1016/j.watres.2015.06.044 |
[18] | XING M, LI X, YANG J, et al. Changes in the chemical characteristics of water-extracted organic matter from vermicomposting of sewage sludge and cow dung[J]. Journal of Hazardous Materials, 2012, 205-206: 24-31. doi: 10.1016/j.jhazmat.2011.11.070 |
[19] | GUPTA A, ZHAO R, NOVAK J T, et al. Variation in organic matter characteristics of landfill leachates in different stabilisation stages[J]. Waste Management & Research, 2014, 32(12): 1192-1199. |
[20] | WANG F, HUANG Y, ZHUO X, et al. Molecular-level transformation characteristics of refractory organics in landfill leachate during ozonation treatment[J]. Science of the Total Environment, 2020, 749: 141558. doi: 10.1016/j.scitotenv.2020.141558 |
[21] | 肖骁, 何小松, 席北斗, 等. 垃圾填埋水溶性有机物组成、演化及络合重金属特征[J]. 环境科学, 2017, 38(9): 3705-3712. |
[22] | BAKER A, CURRY M. Fluorescence of leachates from three contrasting landfills[J]. Water Research, 2004, 38(10): 2605-2613. doi: 10.1016/j.watres.2004.02.027 |
[23] | RODRíGUEZ-VIDAL F J, GARCíA-VALVERDE M, ORTEGA-AZABACHE B, et al. Characterization of urban and industrial wastewaters using excitation-emission matrix (EEM) fluorescence: Searching for specific fingerprints[J]. Journal of Environmental Management, 2020, 263: 110396. doi: 10.1016/j.jenvman.2020.110396 |
[24] | 钟润生, 张锡辉, 管运涛, 等. 三维荧光指纹光谱用于污染河流溶解性有机物来源示踪研究[J]. 光谱学与光谱分析, 2008(2): 347-351. doi: 10.3964/j.issn.1000-0593.2008.02.027 |
[25] | CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(24): 5701-5710. |
[26] | JIANG C, YUAN Y, SUN Z, et al. Effect of hydrostatic pressure and pH value on the three-dimensional fluorescence spectrum of tyrosine solution with various concentrations of copper ion[J]. Journal of Luminescence, 2013, 135: 42-46. doi: 10.1016/j.jlumin.2012.10.045 |
[27] | KANG K, SHIN H S, PARK H. Characterization of humic substances present in landfill leachates with different landfill ages and its implications[J]. Water Research, 2002, 36(16): 4023-4032. doi: 10.1016/S0043-1354(02)00114-8 |
[28] | 张海云, 李爱民, 郑凯. 城市污水二级生化出水中溶解性有机物的特性及其深度处理研究[J]. 环境污染与防治, 2014, 36(2): 71-75. doi: 10.3969/j.issn.1001-3865.2014.02.016 |
[29] | 杜安静, 范举红, 刘锐, 等. 单级和两级串联臭氧-生物活性炭深度处理垃圾渗滤液的比较研究[J]. 环境科学, 2015, 36(11): 4154-4160. |
[30] | 李湘溪, 吴超飞, 吴海珍, 等. 焦化废水处理过程中盐分变化及其影响因素[J]. 化工进展, 2016, 35(11): 3690-3700. |
[31] | ZHAO X, WEI X, XIA P, et al. Removal and transformation characterization of refractory components from biologically treated landfill leachate by Fe2+/NaClO and Fenton oxidation[J]. Separation and Purification Technology, 2013, 116: 107-113. doi: 10.1016/j.seppur.2013.05.030 |