3.中国科学院生态环境研究中心环境水质学国家重点实验室,北京 100085
1.North Research Center for Rural Wastewater Treatment Technology, Ministry of Housing and Urban-Rural Development, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
3.State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
选择长江三角洲地区有一定代表性的乡村家庭,开展了厌氧池-多级布水模块化人工湿地原位处理源分离后的废水的实例研究,旨在掌握乡村家庭源分离后废水的水质特征,并通过厌氧池-多级布水模块化人工湿地,重点解决乡村家庭源分离后的废水原位净化达标排放问题。结果表明,耗氧有机物(以COD计)、BOD
、LAS (linear alkylbenzene sulfonates)是洗涤废水、灰水中的主要污染物质;季节变化、进水浓度对厌氧池-多级布水模块化人工湿地处理源分离后的废水中的耗氧有机物、LAS影响不显著,但季节变化对粪大肠菌群影响显著。总体上,2户农户的设施出水均符合《农田灌溉水质标准》(GB 5084-2005)水作作物的相关规定。
In this study, two representative rural households in the Yangtze River Delta were taken as test sites, then a case study of on-site treatment of wastewater after source separation by an anaerobic tank- modular constructed wetland with multi-level water distribution (AT-MCW) was conducted. The aims of this study were following: grasping the water quality characteristics of rural household wastewater after source separation, and solving the problem of up-to-standard discharge of wastewater after source separation from rural households through on-site treatment with AT-MCW. The results showed that oxygen-consuming organic matter (in COD), BOD
and LAS (linear alkylbenzene sulfonates) were the main pollutants in washing wastewater and grey water; Seasonal changes and influent concentration had no significant effects on the treatment of oxygen-consuming organic matter and LAS in the two types of wastewater by AT-MCW, but seasonal changes had significant effects on fecal coliform; In general, the effluents from the facilities of AT-MCW in two rural household could meet the standard limit of water crop types in the Standards for Irrigation Water Quality (GB 5084-2005).
.
Flow chart of combined ecological process treatment system
Structure diagram of facility
季节变化对2个农户系统出水中各污染物指标浓度及去除率的影响
Influence of seasonal changes on the effluent concentration and the removal rates of each pollutant in two treating systems of rural households
2个农户系统中各单元出水污染物年均指标值及累计去除率
Annual average value and cumulative removal rate of pollutants in the effluent from each unit in two treating systems of rural households
[1] | FAN B, HU M, WANG H, et al. Get in sanitation 2.0 by opportunity of rural China: Scheme, simulating application and life cycle assessment[J]. Journal of Cleaner Production, 2017, 147: 86-95. doi: 10.1016/j.jclepro.2017.01.093 |
[2] | FAN B, HU M, GU J, et al. Economic comparison of different rural sewage treatment patterns[J]. China Water & Wastewater, 2015, 31(14): 20-25. |
[3] | WERNER C, PANESAR A, RüD S B, et al. Ecological sanitation: Principles, technologies and project examples for sustainable wastewater and excreta management[J]. Desalination, 2009, 248(1/2/3): 392-401. |
[4] | KATUKIZA A Y, RONTELTAP M, NIWAGABA C B, et al. Sustainable sanitation technology options for urban slums[J]. Biotechnology Advances, 2012, 30(5): 964-78. doi: 10.1016/j.biotechadv.2012.02.007 |
[5] | HAQ G, CAMBRIDGE H. Exploiting the co-benefits of ecological sanitation[J]. Current Opinion in Environmental Sustainability, 2012, 4(4): 431-435. doi: 10.1016/j.cosust.2012.09.002 |
[6] | LANGERGRABER G, MUELLEGGER E. Ecological sanitation: A way to solve global sanitation problems?[J]. Environment Internation, 2005, 31(3): 433-444. |
[7] | XU M, ZHU S, ZHANG Y, et al. Spatial-temporal economic analysis of modern sustainable sanitation in rural China: Resource-oriented system[J]. Journal of Cleaner Production, 2019, 233: 340-347. doi: 10.1016/j.jclepro.2019.06.103 |
[8] | 陈昢圳, 郑向群, 华进城. 不同污染负荷对废砖垂直流人工湿地处理农村生活污水的影响[J]. 生态环境学报, 2019, 28(8): 1683-1690. |
[9] | BERNARDES F S, HERRERA P G, CHIQUITO G M, et al. Relationship between microbial community and environmental conditions in a constructed wetland system treating greywater[J]. Ecological Engineering, 2019, 139: 105581. doi: 10.1016/j.ecoleng.2019.105581 |
[10] | LAAFFAT J, OUAZZANI N, MANDI L. The evaluation of potential purification of a horizontal subsurface flow constructed wetland treating greywater in semi-arid environment[J]. Process Safety and Environmental Protection, 2015, 95: 86-92. doi: 10.1016/j.psep.2015.02.016 |
[11] | NEMA A, YADAV K D, CHRISTIAN R A. Sustainability and performance analysis of constructed wetland for treatment of greywater in batch process[J]. International Journal of Phytoremediation, 2020, 22(6): 1-9. |
[12] | DENG S, XIE B, KONG Q, et al. An oxic/anoxic-integrated and Fe/C micro-electrolysis-mediated vertical constructed wetland for decentralized low-carbon greywater treatment[J]. Bioresource Technology, 2020, 315: 123802. doi: 10.1016/j.biortech.2020.123802 |
[13] | 刘彤彤. 碳源分离耦合强化生态处理技术净化农村生活污水效能研究[D]. 哈尔滨: 哈尔滨工业大学, 2020. |
[14] | WANG X, JIANG Z, FU A. Treatment of rural domestic sewage by combined technology of upflow anaerobic sludge blanket and two-stage constructed wetlands[J]. China Water & Wastewater, 2020, 36(11): 21-26. |
[15] | 夏斌, 盛晓琳, 许枫, 等. A2O与人工湿地组合工艺处理长三角平原地区农村生活污水的效果[J]. 环境工程学报, 2021, 15(1): 181-192. doi: 10.12030/j.cjee.202002103 |
[16] | 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. |
[17] | LI F, WICHMANN K, OTTERPOHL R. Review of the technological approaches for grey water treatment and reuses[J]. Science of the Total Environment, 2009, 407(11): 3439-3449. doi: 10.1016/j.scitotenv.2009.02.004 |
[18] | BOANO F, CARUSO A, COSTAMAGNA E, et al. A review of nature-based solutions for greywater treatment: Applications, hydraulic design, and environmental benefits[J]. Science of the Total Environment, 2020, 711: 134731. doi: 10.1016/j.scitotenv.2019.134731 |
[19] | NOUTSOPOULOS C, ANDREADAKIS A, KOURIS N, et al. Greywater characterization and loadings-physicochemical treatment to promote onsite reuse[J]. Journal of Environmental Management, 2018, 216: 337-346. |
[20] | 薛念涛, 潘涛, 纪玉琨, 等. 好氧、厌氧、兼氧污水处理技术的原理: 兼谈水解酸化工艺的研发[J]. 环境工程, 2015, 33(S1): 43-48. |
[21] | LI P, WANG Z, YUAN L, et al. Comparison of two different constructed wetland systems to treat swine wastewater[J]. Chinese Journal of Environmental Engineering, 2013, 7(4): 1341-1345. |
[22] | SAEED T, SUN G. A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: Dependency on environmental parameters, operating conditions and supporting media[J]. Journal of Environmental Management, 2012, 112: 429-448. doi: 10.1016/j.jenvman.2012.08.011 |
[23] | LI J, WEN Y, ZHOU Q, et al. Influence of vegetation and substrate on the removal and transformation of dissolved organic matter in horizontal subsurface-flow constructed wetlands[J]. Bioresource Technology, 2008, 99(11): 4990-4996. doi: 10.1016/j.biortech.2007.09.012 |
[24] | ARUNBABU V, SRUTHY S, ANTONY I, et al. Sustainable greywater management with axonopus compressus (broadleaf carpet grass) planted in sub surface flow constructed wetlands[J]. Journal of Water Process Engineering, 2015, 7: 153-160. doi: 10.1016/j.jwpe.2015.06.004 |
[25] | 张自杰. 排水工程(下册)[M]. 北京: 中国建筑工业出版社, 2015. |
[26] | ZHU H, YAN B, XU Y, et al. Removal of nitrogen and COD in horizontal subsurface flow constructed wetlands under different influent C/N ratios[J]. Ecological Engineering, 2014, 63: 58-63. doi: 10.1016/j.ecoleng.2013.12.018 |
[27] | 孙群, 吴蕾, 夏文香, 等. 人工湿地中指示和病原微生物分布与衰减研究[J]. 安全与环境学报, 2009, 9(5): 63-66. doi: 10.3969/j.issn.1009-6094.2009.05.015 |
[28] | 项学敏, 杨洪涛, 周集体, 等. 人工湿地对城市生活污水的深度净化效果研究: 冬季和夏季对比[J]. 环境科学, 2009, 30(3): 713-719. doi: 10.3321/j.issn:0250-3301.2009.03.015 |
[29] | 廖新俤, 骆世明. 人工湿地对猪场废水有机物处理效果的研究[J]. 应用生态学报, 2002, 13(1): 113-117. doi: 10.3321/j.issn:1001-9332.2002.01.025 |
[30] | 崔芳. 进水浓度对人工湿地净化城市湖泊水体影响研究[J]. 水资源与水工程学报, 2010, 21(3): 101-103. |