2.中国科学院大学,北京 100049
1.Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
2.University of Chinese Academy of Sciences, Beijing 100049, China
。对影响因素的分析表明:PP材质移液枪枪头和玻璃材质注射器均未导致明显系统误差和操作误差;在水与甲醇体积比为1∶9的混合液体系中,PP注射器、PTFE与Nylon滤膜的过滤器均导致PFOS的测定浓度增大,且并非材料中含有PFOS残留所致;以甲醇为溶剂时,PFOS待测液润洗后的PP材质注射器与针式过滤器对PFOS浓度测定无显著影响;以水为溶剂时,PP离心管、PP注射器和针式过滤器对PFOS浓度测定有显著影响,移液枪枪头和玻璃注射器未产生显著影响,故建议使用玻璃容器存放含有PFOS的水样品。液液萃取将水替换甲醇为溶剂,液液萃取操作步骤增多,虽然累积误差增大约1%,但测定精确度高,因此液液萃取具有较好的可行性。
To address the observed errors in PFOS concentration analysis, experiments were carried out to explore factors that influence the analysis of trace-level PFOS concentrations. Instrumental analysis suggested that the statistics of the standard curve of PFOS solution were
=0.997 7, indicating that the fitting of the linear relationship is good. The allowable error of 100 μg·L
PFOS concentration was about ±6%, and the average confidence interval was 93.83~105.05 μg·L
. Experimental results showed that neither the PP material pipette tip nor the glass material syringe had significant impact. In the experiments with the 1∶9 of water/methanol mixing solution as the solvent, the PP syringe, PTFE and Nylon membrane filters increased the PFOS concentration, which was not caused by the residual PFOS in the materials. In the experiments using methanol as the solvent, the rinsed PP syringes and needle filters had no significant effects on the detection of PFOS. In experiments with pure water as the solvent, PP centrifuge tubes, PP syringes, and needle filters had a significant effect on the analytical results of PFOS concentration, and pipette tips and glass syringes had insignificant effects. Based on the experimental results, we recommend the use glass containers instead of PP ones when collecting water samples. In addition, the analytical results were more accurate for the method with the liquid-liquid extraction, which replaced the aqueous solution with methanol as the solvent, even though the liquid-liquid extraction cumulative error increased by 1% due to extra operation steps.
.
PFOS standard solutions
Analytical values of PFOS standard solutions with different materials
润洗和无PFOS的1∶9混合液处理对PFOS标准溶液浓度测定的影响
Analytical values of PFOS standard solution with rinsing and no-PFOS 1∶9 mixed solution
Analytical values of PFOS standard solutions with different ratios of water to methanol
Analytical values of PFOS with methanol standard solution
Analytical values of PFOS with aqueous standard solution
地下水与超纯水条件下PFOS溶液的测定结果
Analytical values of PFOS with groundwater and sodium persulfate
[1] | GUELFO J L, ADAMSON D T. Evaluation of a national data set for insights into sources, composition, and concentrations of per- and polyfluoroalkyl substances (PFASs) in US drinking water[J]. Environmental Pollution, 2018, 236: 505-513. doi: 10.1016/j.envpol.2018.01.066 |
[2] | LU Z B, LU R, ZHENG H Y, et al. Correction to: Risk exposure assessment of per- and polyfluoroalkyl substances (PFASs) in drinking water and atmosphere in central Eastern China[J]. Environmental Science and Pollution Research, 2018, 25(10): 9321. doi: 10.1007/s11356-018-1608-z |
[3] | LAU C. Perfluorinated compounds[M]//Experientia Supplementum. Basel: Springer Basel, 2012: 47-86. |
[4] | WANG J, ZENG X W, BLOOM M S, et al. Renal function and isomers of perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS): Isomers of C8 Health Project in China[J]. Chemosphere, 2019, 218: 1042-1049. doi: 10.1016/j.chemosphere.2018.11.191 |
[5] | 臧春元, 张硕, 孙力平, 等. 碳纳米管催化臭氧降解PFOS动力学与过程控制[J]. 环境工程学报, 2017, 11(3): 1459-1464. doi: 10.12030/j.cjee.201512059 |
[6] | LIU Z Y, LU Y L, WANG T Y, et al. Risk assessment and source identification of perfluoroalkyl acids in surface and ground water: Spatial distribution around a mega-fluorochemical industrial park, China[J]. Environment International, 2016, 91: 69-77. doi: 10.1016/j.envint.2016.02.020 |
[7] | 陈荣圻. PFOS的禁用及其相关整理剂和表面活性剂的替代(一)[J]. 上海染料, 2008, 36(6): 24-29. doi: 10.3969/j.issn.1008-1348.2008.06.004 |
[8] | LESCORD G L, KIDD K A, DE SILVA A O, et al. Perfluorinated and polyfluorinated compounds in lake food webs from the Canadian high arctic[J]. Environmental Science & Technology, 2015, 49(5): 2694-2702. |
[9] | LIU S J, LU Y L, XIE S W, et al. Exploring the fate, transport and risk of perfluorooctane sulfonate (PFOS) in a coastal region of China using a multimedia model[J]. Environment International, 2015, 85: 15-26. doi: 10.1016/j.envint.2015.08.007 |
[10] | WANG Z Y, COUSINS I T, SCHERINGER M, et al. Hazard assessment of fluorinated alternatives to long-chain perfluoroalkyl acids (PFAAs) and their precursors: Status quo, ongoing challenges and possible solutions[J]. Environment International, 2015, 75: 172-179. doi: 10.1016/j.envint.2014.11.013 |
[11] | BARRY V, WINQUIST A, STEENLAND K. Perfluorooctanoic acid (PFOA) exposures and incident cancers among adults living near a chemical plant[J]. Environmental Health Perspectives, 2013, 121(11/12): 1313-1318. |
[12] | LLORCA M, FARRé M, TAVANO M S, et al. Fate of a broad spectrum of perfluorinated compounds in soils and biota from Tierra del Fuego and Antarctica[J]. Environmental Pollution, 2012, 163: 158-166. doi: 10.1016/j.envpol.2011.10.027 |
[13] | NAILE J E, KHIM J S, HONG S, et al. Distributions and bioconcentration characteristics of perfluorinated compounds in environmental samples collected from the west Coast of Korea[J]. Chemosphere, 2013, 90(2): 387-394. doi: 10.1016/j.chemosphere.2012.07.033 |
[14] | WANG P, LU Y L, WANG T Y, et al. Shifts in production of perfluoroalkyl acids affect emissions and concentrations in the environment of the Xiaoqing River Basin, China[J]. Journal of Hazardous Materials, 2016, 307: 55-63. doi: 10.1016/j.jhazmat.2015.12.059 |
[15] | BUTENHOFF J L, OLSEN G W, PFAHLES-HUTCHENS A. The applicability of biomonitoring data for perfluorooctanesulfonate to the environmental public health continuum[J]. Environmental Health Perspectives, 2006, 114(11): 1776-1782. doi: 10.1289/ehp.9060 |
[16] | THE EUROPEAN PARLIAMENT AND THE COUNCIL. On persistent organic pollutants and amending Directive 79/117/EEC: REGULATION (EC) No 850/2004 consolidate version 2012[S]. Publications Office of the European Union, 2012. |
[17] | CORDNER A, DE LA ROSA V Y, SCHAIDER L A, et al. Guideline levels for PFOA and PFOS in drinking water: The role of scientific uncertainty, risk assessment decisions, and social factors[J]. Journal of Exposure Science & Environmental Epidemiology, 2019, 29(2): 157-171. |
[18] | THE EUROPEAN PARLIAMENT AND THE COUNCIL. Amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy: Directive 2013/39/EU[S]. Publications Office of the European Union, 2013. |
[19] | QU Y, ZHANG C J, LI F, et al. Equilibrium and kinetics study on the adsorption of perfluorooctanoic acid from aqueous solution onto powdered activated carbon[J]. Journal of Hazardous Materials, 2009, 169(1/2/3): 146-152. |
[20] | WANG F, LIU C S, SHIH K. Adsorption behavior of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) on boehmite[J]. Chemosphere, 2012, 89(8): 1009-1014. doi: 10.1016/j.chemosphere.2012.06.071 |
[21] | PARK H, VECITIS C D, CHENG J, et al. Reductive defluorination of aqueous perfluorinated alkyl surfactants: Effects of ionic headgroup and chain length[J]. The Journal of Physical Chemistry A, 2009, 113(4): 690-696. doi: 10.1021/jp807116q |
[22] | HORI H, MURAYAMA M, INOUE N, et al. Efficient mineralization of hydroperfluorocarboxylic acids with persulfate in hot water[J]. Catalysis Today, 2010, 151(1/2): 131-136. |
[23] | SCHAEFER C E, ANDAYA C, URTIAGA A, et al. Electrochemical treatment of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) in groundwater impacted by aqueous film forming foams (AFFFs)[J]. Journal of Hazardous Materials, 2015, 295: 170-175. doi: 10.1016/j.jhazmat.2015.04.024 |
[24] | KIM T H, LEE S H, KIM H Y, et al. Decomposition of perfluorooctane sulfonate (PFOS) using a hybrid process with electron beam and chemical oxidants[J]. Chemical Engineering Journal, 2019, 361: 1363-1370. doi: 10.1016/j.cej.2018.10.195 |
[25] | YANG S W, CHENG J H, SUN J, et al. Defluorination of aqueous perfluorooctanesulfonate by activated persulfate oxidation[J]. PLoS One, 2013, 8(10): e74877. doi: 10.1371/journal.pone.0074877 |
[26] | 刘晗, 许秦坤, 许建红. 紫外光助零价铁活化过硫酸盐降解全氟辛烷磺酸盐[J]. 西南科技大学学报, 2017, 32(1): 20-24. doi: 10.3969/j.issn.1671-8755.2017.01.004 |
[27] | 蒋闳, 盛旋, 杨嫣嫣, 等. 全氟辛烷磺酰基化合物(PFOS)分析研究进展[J]. 安徽化工, 2007, 33(2): 5-10. doi: 10.3969/j.issn.1008-553X.2007.02.002 |
[28] | AHRENS L, NORSTR?M K, VIKTOR T, et al. Stockholm Arlanda Airport as a source of per- and polyfluoroalkyl substances to water, sediment and fish[J]. Chemosphere, 2015, 129: 33-38. doi: 10.1016/j.chemosphere.2014.03.136 |
[29] | HANSEN K J, JOHNSON H O, ELDRIDGE J S, et al. Quantitative characterization of trace levels of PFOS and PFOA in the Tennessee River[J]. Environmental Science & Technology, 2002, 36(8): 1681-1685. |
[30] | MARTIN J W, KANNAN K, BERGER U, et al. Analytical challenges hamper perfluoroalkyl research[J]. Environmental Science & Technology, 2004, 38(13): 248A-255A. |
[31] | USEPA. Drinking water health advisory for perfluorooctanoic acid (PFOA): EPA 822-R-16-005[S]. Washington, DC, United States, 2016. |
[32] | ISO. Water quality: Determination of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA): Method for unfiltered samples using solid phase extraction and liquid chromatography/mass spectroscopy: ISO 25101[S]. Geneva, Switzerland, 2009. |
[33] | LATH S, KNIGHT E R, NAVARRO D A, et al. Sorption of PFOA onto different laboratory materials: Filter membranes and centrifuge tubes[J]. Chemosphere, 2019, 222: 671-678. doi: 10.1016/j.chemosphere.2019.01.096 |
[34] | WEI C L, WANG Q, SONG X, et al. Distribution, source identification and health risk assessment of PFASs and two PFOS alternatives in groundwater from non-industrial areas[J]. Ecotoxicology and Environmental Safety, 2018, 152: 141-150. doi: 10.1016/j.ecoenv.2018.01.039 |
[35] | 金一和, 刘晓, 张迅, 等. 人血清中全氟辛烷磺酰基化合物污染现状[J]. 中国公共卫生, 2003, 19(10): 1200-1201. doi: 10.3321/j.issn:1001-0580.2003.10.021 |
[36] | HANSEN K J, CLEMEN L A, ELLEFSON M E, et al. Compound-specific, quantitative characterization of organic fluorochemicals in biological matrices[J]. Environmental Science & Technology, 2001, 35(4): 766-770. |
[37] | PARK S, LEE L S, MEDINA V F, et al. Heat-activated persulfate oxidation of PFOA, 6: 2 fluorotelomer sulfonate, and PFOS under conditions suitable for in situ groundwater remediation[J]. Chemosphere, 2016, 145: 376-383. doi: 10.1016/j.chemosphere.2015.11.097 |
[38] | BRUTON T A, SEDLAK D L. Treatment of aqueous film-forming foam by heat-activated persulfate under conditions representative of in situ chemical oxidation[J]. Environmental Science & Technology, 2017, 51(23): 13878-13885. |
[39] | WEI C L, SONG X, WANG Q, et al. Sorption kinetics, isotherms and mechanisms of PFOS on soils with different physicochemical properties[J]. Ecotoxicology and Environmental Safety, 2017, 142: 40-50. doi: 10.1016/j.ecoenv.2017.03.040 |
[40] | 华东师范大学. 分析化学[M]. 3版. 北京: 高等教育出版社, 2006. |
[41] | BARTLETT P D, COTMAN J D. The kinetics of the decomposition of potassium persulfate in aqueous solutions of methanol[J]. Journal of the American Chemical Society, 1949, 71(4): 1419-1422. doi: 10.1021/ja01172a078 |