2.北京理工大学材料学院,北京 100081
1.School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
2.School of Materials, Beijing Institute of Technology, Beijing 100081, China
钴白合金是铜钴矿深加工过程中的副产物,其中的钴、铜等金属资源具有较高的回收价值。利用3种混合菌体系(At、Af、Lf)浸提钴白合金中的铜和钴,考察了在不同固液比下非接触和接触浸提铜和钴的浸出率并对其浸出机理进行了探究。在非接触浸出1%固液比下,钴的浸出率为100%,浸出浓度为1 356.14 mg·L
。在接触浸出4%固液比下,浸出5 d,钴100%浸出,铜基本留存在残渣中。通过对比生物淋滤中的接触浸出和非接触浸出实验的浸出渣中铜和钴的赋存形态可知,钴白合金中钴的浸出机理为生物酸的直接作用,铜的浸出机理为生物酸和Fe
的循环。利用生物浸出循环富集工艺,可高效回收钴白合金中的铜和钴。
The three mixed bacterial systems of At, Af and Lf were used to extract copper and cobalt from cobalt white alloy in a non-ferrous metal plant in Henan to investigate the leaching rate and leaching mechanism of copper and cobalt under different contact conditions of non-contact leaching and contact leaching with different solid-liquid ratios. The results showed that under the non-contact leaching with 1% solid-liquid ratio, 100% Co was leached and 77.42% Cu was leached, and their leaching mass concentration were 1356.14 and 837.19 mg·L
, respectively. After 10 cycles of leaching, the concentrations of copper and cobalt in the final leaching solution were 7 358.67 mg·L
. After 5 days of contact leaching with 4% solid-liquid ratio, 100% cobalt was leached, while copper basically remained in the residue, which can provide a reference for the stepwise leaching of cobalt white alloy. Comparing the occurrence of copper and cobalt in the leaching residue of the contact leaching and non-contact leaching experiments in biological leaching, it is determined that the leaching of cobalt in cobalt white alloy is the direct effect of biological acid, and the leaching mechanism of copper is the common combination of biological acid and Fe
effect. In the leaching system with the participation of bacteria, there is a cycle in which copper leaching consumes Fe
. The use of biological leaching cycle enrichment technology provides a reference for the efficient recovery of copper and cobalt in cobalt white alloy.
.
Chemical morphology of Cu, Co and Fe of cobalt white alloy
XRD patterns of cobalt white alloy
SEM micrographs of cobalt white alloy
Changes in pH and bacterial count of the system during bacterial growth
concentration in the system during bacterial growth
不同固液比下非接触浸出钴白合金中钴铜的浸出率
Target metal leaching rate of non-contact bioleaching of cobalt white alloy at different solid-liquid ratios
下钴白合金浸出渣中铜、钴、铁的赋存形态分析
Chemical morphology of Cu, Co and Fe of cobalt white alloy leaching slag under 1% solid-to-liquid ratio
下非接触不同循环次数下钴白合金中钴铜的浸出浓度
Concentration of cobalt white alloy target metal leaching with the number of cycles under 1% solid-to-liquid Ratio
不同固液比下接触浸出钴白合金中钴和铜的浸出率
Co and Cu leaching rate of contact bioleaching of cobalt white alloy at different solid-liquid ratios
Changes in pH and bacterial count during contact leaching process
concentration during contact leaching
XRD patterns of cobalt white alloy before and after leaching
不同固液比下接触浸出第1天残渣中金属赋存形态变化
Changes of metal forms in residues on the first day of contact leaching with different solid-to-liquid ratios
[1] | 刘东辉, 钟轩, 熊以俊. ICP-OES法测定钴白合金中主元素含量[J]. 广州化工, 2020, 48(17): 64-67. doi: 10.3969/j.issn.1001-9677.2020.17.023 |
[2] | 焦翠燕, 郭学益. 钴白合金处理工艺进展及研究方向[J]. 金属材料与冶金工程, 2011, 39(2): 58-63. doi: 10.3969/j.issn.1005-6084.2011.02.014 |
[3] | 胡宇杰, 孙培梅, 李洪桂, 等. 废硬质合金的回收再生方法及研究进展[J]. 稀有金属与硬质合金, 2004, 53(3): 53-57. doi: 10.3969/j.issn.1004-0536.2004.03.015 |
[4] | CRUNDWELL F K, DUPREEZ N B, KNIGHTS B D H. Production of cobalt from copper-cobalt ores on the African Copperbelt: An overview[J]. Minerals Engineering, 2020, 156(7): 106450. |
[5] | 王含渊, 江培海, 张寅生, 等. 钴白合金湿法冶金工艺研究[J]. 矿冶, 1997, 6(1): 68-70. |
[6] | 杜长福, 纪方力. 从钴白合金提取钴铜工业生产概述[J]. 世界有色金属, 2015, 2(11): 107-108. |
[7] | REN G, LIU Z, PAN B, et al. A novel process for cobalt and copper recovery from cobalt white alloy with high silicon[J]. Metallurgical Research & Technology, 2020, 117(4): 404. |
[8] | YU X, LI Y, LUO Z, et al. Wetting behavior and mechanism of glass coatings on samarium-cobalt alloys in the heating process[J]. Ceramics International, 2020, 46(14): 22980-22986. doi: 10.1016/j.ceramint.2020.06.073 |
[9] | 徐志峰, 月日辉, 严康, 等. 复杂高硅钴白合金碱焙烧脱硅预处理[J]. 中国有色金属学报, 2012, 22(10): 2916-2923. |
[10] | 刘卓君, 刘欣, 李林艳, 等. 钴白合金的常压浸出工艺研究[J]. 有色金属科学与工程, 2015, 6(1): 24-28. |
[11] | 曹洪杨, 金明亚, 王继民, 等. 氧压酸浸在含锗铜钴白合金有价组分分离中的应用[J]. 材料研究与应用, 2016, 10(2): 131-134. doi: 10.3969/j.issn.1673-9981.2016.02.013 |
[12] | 熊以俊, 刘东辉. 机械活化强化钴白合金酸浸钴的试验研究[J]. 湿法冶金, 2015, 34(4): 292-295. |
[13] | 洪侃, 范进军, 卢博, 等. 铜钴合金双膜电化学溶解造液造碱研究[J]. 江西理工大学学报, 2010, 31(2): 17-20. |
[14] | 胡国宏. 氧化亚铁硫杆菌浸出钴白合金研究[D]. 长沙: 中南大学, 2012. |
[15] | 胡国宏, 肖利, 方正, 等. 氧化亚铁硫杆菌浸出钴白合金[J]. 过程工程学报, 2012, 12(2): 200-205. |
[16] | 牛志睿, 江明荣, 李倩, 等. 超声辅助生物淋滤废旧Zn-C电池锌锰溶出的研究[J]. 环境科学学报, 2016, 36(9): 3313-3321. |
[17] | TORMA A E. Biotechnology applied to mining of metals[J]. Biotechnol Adv, 1983, 1(1): 73-80. |
[18] | 王畅,杜虹,杨运云,等. 重金属形态连续萃取法对沉积物矿物相态的影响[J]. 分析化学, 2011, 39(12): 1887-1892. |
[19] | 王畅,夏冰,王冠华,等. 缺氧沉积物中重金属形态连续萃取方法的稳定性研究[J]. 分析测试学报, 2012, 31(4): 470-474. |
[20] | 揭诗琪, 邵继莹, 吴雨桐, 等. 生物淋滤结合类芬顿反应去除底泥中重金属[J]. 有色金属科学与工程, 2016, 7(1): 108-113. |
[21] | 张祥楠. 生物淋滤法去除污泥中重金属[D]. 沈阳: 沈阳建筑大学, 2012. |
[22] | 杨洁, 蔡体久, 汪群慧, 等. 直接与间接生物淋滤法去除城市生活垃圾焚烧飞灰中重金属的研究[J]. 北京林业大学学报, 2008, 30(S1): 267-271. |
[23] | 辛宝平, 李是珅, 赵小鹭, 等. 废旧锂离子电池中钴的生物淋滤机制[J]. 科学通报, 2008, 53(23): 2881-2887. doi: 10.3321/j.issn:0023-074X.2008.23.008 |
[24] | WU H Y, TING Y P. Metal extraction from municipal solid waste (MSW) incinerator fly ash: Chemical leaching and fungal bioleaching[J]. Enzyme and Microbial Technology, 2006, 38(6): 839-847. doi: 10.1016/j.enzmictec.2005.08.012 |
[25] | RAWLINGS D E, TRIBUTSCH H, HANSFORD G S. Reasons why 'Leptospirillum'-like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores[J]. Microbiology, 1999, 145: 5-13. doi: 10.1099/13500872-145-1-5 |
[26] | 孙艳, 吴锋, 辛宝平, 等. 硫杆菌浸出废旧MH/Ni电池中重金属研究[J]. 生态环境, 2007, 16(6): 1674-1678. |
[27] | 黄峰源. 嗜酸性硫杆菌生长特性与耐受重金属机制及污泥淋滤过程中微生物分子生态的研究[D]. 南京: 南京农业大学, 2006. |
[28] | 沈镭, 张再利, 贾晓珊. 氧化亚铁硫杆菌和氧化硫硫杆菌对硫代硫酸钠的代谢机理研究[J]. 环境科学学报, 2006, 26(12): 2000-2007. doi: 10.3321/j.issn:0253-2468.2006.12.011 |
[29] | 陈亮, 代云. 两矿法浸出钴白合金工艺及机制研究[J]. 湿法冶金, 2017, 36(1): 24-27. |
[30] | 陈亮. 钴白合金和水钴矿联合高压酸浸的工艺研究[J]. 中国有色冶金, 2016, 45(4): 75-78. doi: 10.3969/j.issn.1672-6103.2016.04.020 |
[31] | GU T, RASTEGAR S O, MOUSAVI S M, et al. Advances in bioleaching for recovery of metals and bioremediation of fuel ash and sewage sludge[J]. Bioresource Technology, 2018, 261: 428-440. doi: 10.1016/j.biortech.2018.04.033 |
[32] | NARESHKUMAR R, NAGENDRAN R. Changes in nutrient profile of soil subjected to bioleaching for removal of heavy metals using Acidithiobacillus thiooxidans[J]. Journal of Hazardous Materials, 2008, 156(1-3): 102-107. doi: 10.1016/j.jhazmat.2007.12.001 |
[33] | DELVASTO P, VALVERDE A, BALLESTER A, et al. Diversity and activity of phosphate bioleaching bacteria from a high-phosphorus iron ore[J]. Hydrometallurgy, 2008, 92(3/4): 124-129. doi: 10.1016/j.hydromet.2008.02.007 |
[34] | XIA L X, LIU J S, XIAO L, et al. Single and cooperative bioleaching of sphalerite by two kinds of bacteria: Acidithiobacillus ferriooxidans and Acidithiobacillus thiooxidans[J]. Transactions of Nonferrous Metals Society of China, 2008, 18(1): 190-195. |
[35] | BURZYMNSKA L, GUMOWSKA W, RUDNIK E, et al. Mechanism of the anodic dissolution of Cu70-Co4-Fe14-Pb7 alloy originated from reduced copper converter slag in an ammoniacal solution[J]. Hydrometallurgy, 2008, 92(1/2): 34-41. doi: 10.1016/j.hydromet.2008.01.009 |
[36] | FENG R, XU S, LIU J, et al. The influence of Cl? on the electrochemical dissolution of cobalt white alloy containing high silicon in a sulfuric acid solution[J]. Hydrometallurgy, 2014, 142: 12-22. doi: 10.1016/j.hydromet.2013.10.006 |
[37] | KAKSONEN A H, SARKIJARVI S, PEURANIEMI E, et al. Metal biorecovery in acid solutions from a copper smelter slag[J]. Hydrometallurgy, 2017, 168: 135-140. doi: 10.1016/j.hydromet.2016.08.014 |