2.催化与环境新材料重庆市重点实验室,重庆 400067
1.College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
2.Chongqing Key Laboratory of Catalysis and New Environmental Materials, Chongqing 400067, China
体系中的主要活性自由基是·OH,通过液相-质谱联用仪(LC-MS)检测出10种中间产物,并由此推测了TC可能的降解路径。
was used to treat tetracycline hydrochloride (TC) simulated wastewater. The effects of different treatment methods, H
dosage, ultrasonic power, initial concentration of TC and pH on the TC removal rate were studied. The results showed that ultrasonic combined H
technology could effectively treat TC wastewater, and its degradation conformed to the pseudo-first-order reaction kinetic model. When the concentration of wastewater solution was 10 mg·L
, the ultrasonic power was 120 W, and the initial pH was 11, the TC removal rate could reach 90.4%. Electronic paramagnetic resonance(EPR) experimental results confirmed that the main active free radical in ultrasonic/H
system was ·OH. Ten intermediate products were detected by liquid chromatography-mass spectrometry (LC-MS), and their possible degradation pathways were inferred.
.
treating TC solution
TC degradation effect by different systems
dosages on TC degradation and reaction rate
Effect of ultrasonic power on TC degradation
不同初始浓度对TC降解效果和反应速率的影响
Effect of initial concentrations on TC degradation and reaction rate
Effect of pH on TC degradation
Characteristic EPR signal of ·OH
LC-MS chromatogram of TC
Pathway of TC degradation
[1] | BHATIA V, RAY A K, DHIR A. Enhanced photocatalytic degradation of ofloxacin by co-doped titanium dioxide under solar irradiation[J]. Separation & Purification Technology, 2016, 161: 1-7. |
[2] | ZHAO X D, LI X J, ZHANG X L, et al. Bioelectrochemical removal of tetracycline from four typical soils in China: A performance assessment[J]. Bioelectrochemistry, 2019, 129: 26-33. doi: 10.1016/j.bioelechem.2019.04.016 |
[3] | YU Y S, CHEN L J, FANG Y, et al. High temperatures can effectively degrade residual tetracyclines in chicken manure through composting[J]. Journal of Hazardous Materials, 2019, 380: 120862. doi: 10.1016/j.jhazmat.2019.120862 |
[4] | 安小英. g-C3N4基复合光催化材料的制备及其降解盐酸四环素研究[D]. 西安: 长安大学, 2016. |
[5] | LI S, HU J. Photolytic and photocatalytic degradation of tetracycline: Effect of humic acid on degradation kinetics and mechanisms[J]. Journal of Hazardous Materials, 2016, 318: 134-144. doi: 10.1016/j.jhazmat.2016.05.100 |
[6] | ZHANG N Q, CHEN J Y, FANG Z Q, et al. Ceria accelerated nanoscale zerovalent iron assisted heterogenous Fenton oxidation of tetracycline[J]. Chemical Engineering Journal, 2019, 369: 588-599. doi: 10.1016/j.cej.2019.03.112 |
[7] | CHOI K J, SON H J, KIM S H. Ionic treatment for removal of sulfonamide and tetracycline classes of antibiotic[J]. Science of the Total Environment, 2007, 387(1/2/3): 247-256. |
[8] | SELMI T, SANCHEZ S A, GADONNEIX P, et al. Tetracycline removal with activated carbons produced by hydrothermal carbonisation of Agave americana fibres and mimosa tannin[J]. Industrial Crops and Products, 2018, 115: 146-157. doi: 10.1016/j.indcrop.2018.02.005 |
[9] | QI N, WANG P, WANG C, et al. Effect of a typical antibiotic (tetracycline) on the aggregation of TiO2 nanoparticles in an aquatic environment[J]. Journal of Hazardous Materials, 2017, 341: 187-197. |
[10] | ZHANG F L, YUE Q Y, GAO Y, et al. Application for oxytetracycline wastewater pretreatment by Fe-C-Ni catalytic cathodic-anodic-electrolysis granular fillers from rare-earth tailings[J]. Ecotoxicology and Environmental Safety, 2018, 164: 641-647. doi: 10.1016/j.ecoenv.2018.08.081 |
[11] | WANG Y, LI B, LI G, et al. A modified Z-scheme Er3+: YAlO3@(PdS/BiPO4)/(Au/rGO)/CdS photocatalyst for enhanced solar-light photocatalytic conversion of nitrite[J]. Chemical Engineering Journal, 2017, 322: 556-570. doi: 10.1016/j.cej.2017.04.053 |
[12] | WU F, ZHOU F, ZHU Z Y, et al. Enhanced photocatalytic activities of Ag3PO4/GO in tetracycline degradation[J]. Chemical Physics Letters, 2019, 724: 90-95. doi: 10.1016/j.cplett.2019.03.058 |
[13] | HU J Y, YANG R, LI Z H, et al. In-situ growth zinc oxide globular on the graphitic carbon nitride to fabrication binary heterojunctions and their photocatalytic degradation performance for the tetracycline[J]. Solid State Sciences, 2019, 92: 60-67. doi: 10.1016/j.solidstatesciences.2019.02.009 |
[14] | QIAO J, ZHANG H, LI G, et al. Fabrication of a novel Z-scheme SrTiO3/Ag2S/CoWO4 composite and its application in sonocatalytic degradation of tetracyclines[J]. Separation & Purification Technology, 2018, 211: 843-856. |
[15] | 蔡春芳. 超声波技术在降解水体污染物中的应用研究[J]. 环境科学与管理, 2018, 43(5): 64-68. doi: 10.3969/j.issn.1673-1212.2018.05.017 |
[16] | CHU K H, AL-HAMADANI Y A J, PARK C M, et al. Ultrasonic treatment of endocrine disrupting compounds, pharmaceuticals, and personal care products in water: A review[J]. Chemical Engineering Journal, 2017, 327: 629-647. doi: 10.1016/j.cej.2017.06.137 |
[17] | JONGHUN H, BYUNG-MOON J, JIYONG H, et al. Heterogeneous sonocatalytic degradation of an anionic dye in aqueous solution using a magnetic lanthanum dioxide carbonate-doped zinc ferrite-reduced graphene oxide nanostructure[J]. Ecotoxicology and Environmental Safety, 2019, 182: 109396.1-109396.9. |
[18] | LEE M, OH J. Sonolysis of trichloroethylene and carbon tetrachloride in aqueous solution[J]. Ultrasonics Sonochemistry, 2010, 17(1): 207-212. doi: 10.1016/j.ultsonch.2009.06.018 |
[19] | NILSUN H I, G?K?E T. Reactive dyestuff degradation by combined sonolysis and ozonation[J]. Dyes and Pigments, 2001, 16(49): 149-153. |
[20] | ORR P T, JONES G J, HAMILTON G R. Removal of saxitoxins from drinking water by granular activated carbon, ozone and hydrogen peroxide: Implications for compliance with the Australian drinking water guidelines[J]. Water Research, 2004, 38(20): 4455-4461. doi: 10.1016/j.watres.2004.08.024 |
[21] | 岳冬梅, 杜霞, 李娟. 超声波结合膨胀石墨及类芬顿试剂降解偶氮染料[J]. 化工管理, 2020(4): 21-22. doi: 10.3969/j.issn.1008-4800.2020.04.015 |
[22] | 傅敏, 蒋永生, 周莉, 等. 超声合成二苯基羟乙酮的研究[J]. 包装工程, 2004, 25(6): 66-67. doi: 10.3969/j.issn.1001-3563.2004.06.025 |
[23] | REZA R, AFSHIN M, ALI J, et al. Application of response surface methodology for optimization of natural organic matter degradation by UV/H2O2 advanced oxidation process[J]. Journal of Environmental Health Science & Engineering, 2014, 12(1): 67. |
[24] | DüKKANCI M, GüNDüZ G. Ultrasonic degradation of oxalic acid in aqueous solutions[J]. Ultrasonics Sonochemistry, 2006, 13(6): 517-522. doi: 10.1016/j.ultsonch.2005.10.005 |
[25] | ZHANG Y, XIAO Z, CHEN F, et al. Degradation behavior and products of malathion and chlorpyrifos spiked in apple juice by ultrasonic treatment[J]. Ultrasonics Sonochemistry, 2010, 17: 72-77. doi: 10.1016/j.ultsonch.2009.06.003 |
[26] | GOGATE P R, PANDIT A B. Engineering designmethods for cavitation reactorsⅡhydrodynamic cavitation reactors[J]. AIChE Journal, 2000, 46(8): 1641-1654. doi: 10.1002/aic.690460815 |
[27] | FINDIK S, GüNDüZ G. Sonolytic degradation of acetic acid in aqueous solutions[J]. Ultrasonics Sonochemistry, 2007, 14(2): 157-162. doi: 10.1016/j.ultsonch.2006.03.009 |
[28] | 郑怀礼, 张占梅. 低频超声协同Fe-Ni-Mn/Al2O3催化降解酸性绿B的研究[J]. 环境工程学报, 2009, 3(2): 193-198. |
[29] | 马艳, 高乃云, 姚娟娟, 等. 水中盐酸四环素的超声辐照降解[J]. 华南理工大学学报(自然科学版), 2010, 38(8): 147-152. |
[30] | QIANG Z, ADAMS C. Potentiometric determination of acid dissociation constants (pKa) for human and veterinary antibiotics[J]. Water Research, 2004, 38(12): 2874-2890. doi: 10.1016/j.watres.2004.03.017 |
[31] | KHAN M H, BAE H, JUNG J Y. Tetracycline degradation by ozonation in the aqueous phase: Proposed degradation intermediates and pathway[J]. Journal of Hazardous Materials, 2010, 181(1): 659-665. |
[32] | SONG C, LIU H Y, GUO S, et al. Photolysis mechanisms of tetracycline under UV irradiation in simulated aquatic environment surrounding limestone[J]. Chemosphere, 2020, 244: 1255-1282. |