2.西南交通大学土木工程学院,成都 610031
1.School of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 610031, China
2.School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China
在pH为3和5的条件下,研究了芬顿氧化钙体系联合十二烷基二甲基苄基氯化铵(DDBAC)对污泥破解效果及脱水性能的影响,以期减少CaO的用量并同时提高芬顿反应的适用pH。以脱水泥饼含水率(W
)、毛细吸水时间(CST)、过滤时间(TTF)、污泥沉降比(SV)和胞外聚合物(EPS)中蛋白质(PN)与多糖(PS)的含量作为评价指标,对DDBAC投加量做单因素分析,找出其最佳投加量;并比较在不同pH条件下,DDBAC对污泥脱水性能的影响。结果表明,在pH为3条件下,H
为68.57%、CST为24 s、TTF为44 s、SV为72%。最佳脱水条件污泥EPS中的PN、PS总量大幅降低,其中T-EPS含量变化相较于S/L-EPS与污泥脱水性能的变化有更强的联系。在pH为5的条件下,该联合体系也有较好的脱水效果,对芬顿体系在弱酸性环境下使用有一定的参考价值。该联合体系能有效降低CaO的用量,同时能避免处理后的污泥pH过高、易板结的问题,且不会造成二次污染。
In order to reduce the amount of CaO and increase the applicable pH for the Fenton reaction, the effect of Fenton’s reagent and CaO system combined with DDBAC on the cracking effect and dewaterability of sludge under pH values of 3 and 5 were investigated in this study.Water content of filtered cake (W
), capillary suction time (CST), and time to filter (TTF), sludge volume (SV), protein (PN) and polysaccharide (PS) contents in extracellular polymeric substance (EPS) were used to evaluate the sludge dewaterability.And single factor experiment was conducted on DDBAC’s dosage to find the optimal dosages.The results showed that the sludge dewaterability was the best when the dosages of H
, CST, TTF and SV were 68.57%, 24 s, 44 s and 72%, and the total PN and PS in the sludge EPS were significantly reduced. The change of T-EPS content was more strongly related to the change of sludge dewaterability than that of S/ L-EPS.Under the condition of pH 5, the combined system also had a good dewaterability, and the filter cake’s pH was close to neutral, which had certain reference value for the application of Fenton’s reagent in weak acid environment. The combined system could effectively reduce the dosage of CaO, and at the same time avoided the problem of high pH of treated sludge, easy hardening, and will not cause secondary pollution.
.
DDBAC投加量对不同pH条件下污泥脱水效果的影响
Effects of DDBAC dosage on sludge dewaterability under different pH conditions
DDBAC投加量对不同pH条件下污泥SV的影响
Effects of DDBAC dosage on sludge SV under different pH conditions
DDBAC投加量对不同pH条件下污泥CST与TTF的影响
Effects of DDBAC dosages on sludge CST and TTF under different pH conditions
DDBAC投加量对不同pH条件下污泥EPS成分的影响
Effects of DDBAC dosages on sludge EPS content under different pH conditions
[1] | QI Y, THAPA K B, HOADLEY A F A. Application of filtration aids for improving sludge dewatering properties: A review[J]. Chemical Engineering Journal, 2011, 171: 373-384. doi: 10.1016/j.cej.2011.04.060 |
[2] | YANG G, ZHANG G M, WANG H C. Current state of sludge production, management, treatment and disposal in China[J]. Water Research, 2015, 78: 60-73. doi: 10.1016/j.watres.2015.04.002 |
[3] | 王丽苹, 李平, 木合塔尔·吐尔洪, 等. Fe0/H2O2类芬顿法提高污泥脱水性能及机理分析[J]. 现代化工, 2018, 38(12): 119-123. |
[4] | TONY M A, ZHAO Y Q, TAYEB A M. Exploitation of Fenton and Fenton-like reagents as alternative conditioners for alum sludge conditioning[J]. Journal of Environmental Sciences, 2009, 21: 101-105. doi: 10.1016/S1001-0742(09)60018-8 |
[5] | HOUGHTON J I, QUARMBY J, STEPHENSON T. Municipal wastewater sludge dewaterability and the presence of microbial extracellular polymer[J]. Water Science & Technology, 2001, 44(2/3): 373-379. |
[6] | YU G H, HE P J, SHAO L M. Stratification structure of sludge flocs with implications to dewaterability[J]. Environmental Science & Technology, 2008, 42(21): 7944-7949. |
[7] | FENG X, DENG J C, LEI He Y, et al. Dewaterability of waste activated sludge with ultrasound conditioning[J]. Bioresource Technology, 2009, 100(3): 1074-1081. doi: 10.1016/j.biortech.2008.07.055 |
[8] | SHENG G P, YU H Q, LI X Y. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: A review[J]. Biotechnology Advances, 2010, 28: 882-894. doi: 10.1016/j.biotechadv.2010.08.001 |
[9] | BUYUKKAMAIC N. Biological sludge conditioning by Fenton’s reagent[J]. Process Biochemistry, 2004, 39(11): 1503-1506. doi: 10.1016/S0032-9592(03)00294-2 |
[10] | 徐文迪, 常沙, 明铁山, 等. 基于硫酸根自由基(SO4?·)的污泥预处理技术[J]. 环境工程学报, 2018, 12(5): 1528-1535. |
[11] | GUO S D, LIANG H, BAI L M. Synergistic effects of wheat straw powder and persulfate/Fe(II) on enhancing sludge dewaterability[J]. Chemosphere, 2019, 215: 333-341. doi: 10.1016/j.chemosphere.2018.10.008 |
[12] | LIU L Y, YAN H, YANG C. Dewatering of drilling sludge by ultrasound assisted Fe(II)-activated persulfate oxidation[J]. Royal Society of Chemistry, 2018, 8: 29756-29766. |
[13] | 汪日平, 王继鹏, 周正伟, 等. Fe3O4/石墨烯-H2O2预处理对污泥脱水性能的影响及其作用机理[J]. 环境工程学报, 2017, 11(10): 5590-5596. |
[14] | 于文华, 濮文虹, 时亚飞, 等. 阳离子表面活性剂与石灰联合调理对污泥脱水性能的影响[J]. 环境化学, 2013, 32(9): 1785-1791. |
[15] | 李雪, 李飞, 曾光明, 等. 表面活性剂对污泥脱水性能的影响及其作用机理[J]. 环境工程学报, 2016, 10(5): 2221-2226. |
[16] | 陈银广, 杨海真, 吴桂标, 等. 表面活性剂改进活性污泥的脱水性能及其作用机理[J]. 环境科学, 2000, 21(5): 97-100. |
[17] | 刘欢. F-S复合调理剂对市政污泥脱水性能影响的研究[D]. 武汉: 华中科技大学, 2012. |
[18] | LIN Y F, JING S R, LEE D Y. Recycling of wood chips and wheat dregs for sludge processing[J]. Bioresource Technology, 2011, 76(2): 161-163. |
[19] | 张昊, 杨家宽, 虞文波, 等. Fenton试剂与骨架构建体复合调理剂对污泥脱水性能的影响[J]. 环境科学学报, 2013, 33(10): 2742-2749. |
[20] | HONG C, SI Y X, XING Y, et al. Effect of surfactant on bound water content and extracellular polymers substances distribution in sludge[J]. RSC Advances, 2015, 5: 23383-23390. doi: 10.1039/C4RA15370G |
[21] | HONG C, XING Y, HUA X F, et al. Dewaterability of sludge conditioned with surfactant DDBAC pretreatment by acid/alkali[J]. Environmental Biotechnology, 2015, 99: 6103-6111. doi: 10.1007/s00253-015-6451-2 |
[22] | 刘鹏, 刘欢, 姚洪, 等. 芬顿试剂及骨架构建体对污泥脱水性能的影响[J]. 环境科学与技术, 2013, 36(10): 146-151. |
[23] | 刘中兴, 谢传欣, 石宁, 等. 过氧化氢溶液分解特性研究[J]. 齐鲁石油化工, 2009, 37(2): 99-102. |
[24] | RIVAS F J, FRADES B J, BUXEDA P. Oxidation of p-hydroxybenzoic acid by Fenton’s reagent[J]. Water Research, 2001, 35: 387-396. doi: 10.1016/S0043-1354(00)00285-2 |
[25] | LO I M C, LAI K C, CHEN G H. Salinity effect on mechanical dewatering of sludge with and without chemical conditioning[J]. Environmental Science & Technology, 2001, 35: 4691-4696. |
[26] | YANG S F, LI X Y. Influences of extracellular polymeric substances (EPS) on the characteristics of activated sludge under non-steady-state conditions[J]. Process Biochemistry, 2009, 44(1): 91-96. doi: 10.1016/j.procbio.2008.09.010 |
[27] | RIESZ P, BERDAHL D, CHRISTMAN C L. Free radical generation by ultrasound in aqueous and nonaqueous solutions[J]. Environmental Health Perspectives, 1985, 64: 233-252. doi: 10.1289/ehp.8564233 |
[28] | 余瑞元, 袁明秀, 陈丽蓉, 等. 生物化学实验原理和方法[M]. 2版. 北京: 北京大学出版社, 2005. |
[29] | 黄绍松, 梁嘉林, 张斯玮, 等. Fenton氧化联合氧化钙调理对污泥脱水的机理研究[J]. 环境科学学报, 2018, 38(5): 1906-1919. |
[30] | MIKKELSEN L H, KEIDING K. Physico-chenmical characteristics of full scale sewage sludges with implications to dewatering[J]. Water Research, 2002, 36(10): 2451-2462. doi: 10.1016/S0043-1354(01)00477-8 |
[31] | WANG L F, HE D Q, TONG Z H. Characterization of dewatering process of activated sludge assisted by cationic surfactants[J]. Biochemical Engineering Journal, 2014, 91: 174-178. doi: 10.1016/j.bej.2014.08.008 |
[32] | WANG H W, DENG H H, MA L M, et al. Influence of operating conditions on extracellular polymeric substances and surface properties of sludge flocs[J]. Carbohydrate Polymers, 2013, 92: 510-515. doi: 10.1016/j.carbpol.2012.09.055 |
[33] | HONG C, WANG Z Q, SI Y X, et al. Improving sludge dewaterability by combined conditioning with Fenton’s reagent and surfactant[J]. Environmental Biotechnology, 2017, 101: 809-816. doi: 10.1007/s00253-016-7939-0 |
[34] | FU J J, XIA C J, WANG Y. An investigation for the key role of surfactants in activated sludge dewatering[J]. Journal of Chemical Engineering of Japan, 2010, 43(2): 238-246. doi: 10.1252/jcej.09we176 |
[35] | SHEN W, ZHANG K C, KORNFIELD J A, et al. Tuning the erosion rate of artificial protein hydrogels through control of network topology[J]. Nature Materials, 2006, 5(2): 153-158. doi: 10.1038/nmat1573 |
[36] | WEST E R, XU M, WOODRUFF T K, et al. Physical properties of alginate hydrogels and their effects on in vitro follicle development[J]. Biomaterials, 2007, 28(30): 4439-4448. doi: 10.1016/j.biomaterials.2007.07.001 |