5.无锡宏普生物环保科技有限公司,无锡 214125
1.School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
3.Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou 215009, China
4.Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
5.Wuxi HOPE Bio-Environmental Protection Technology Co. Ltd., Wuxi 214125, China
以食品厂污水处理剩余污泥和玉米秸秆为堆肥原料,研究了氨三乙酸(NTA)在好氧堆肥过程中的保氮效果。结果表明,添加NTA可以提高好氧堆肥过程中氮素的保存和有机物的降解效率,当NTA的添加量为2.5%时,3 d内堆体即可到达高温期,高温期持续时间为9 d。与空白对照相比,堆肥结束时,NH
累积挥发量减少了15.20%,铵态氮、硝态氮和凯氏氮含量分别提高了242%、10.54%和10.62%;同时,二氧化碳累积排放量增加了13.47%,总有机碳含量降低了1.4%。堆肥结束时,堆肥产物的碳氮比和种子发芽指数分别为8.84和95.46%,达到了腐熟要求。堆肥过程中,NTA水解产生H
结合,这有利于堆体中氮素的保存,提高堆肥产品的肥效。本研究结果可为好氧堆肥保氮工艺优化提供参考。
The waste activated sludge from wastewater treatment of food industry and corn stalks were used as raw composting materials, and the nitrogen retention efficiency of nitrilotriacetic acid (NTA) during aerobic composting was studied. The results showed that the addition of NTA improved the efficiency of nitrogen retention and organic matter degradation during aerobic composting. When the dosage of NTA added was 2.5%, a high temperature period was reached within 3 days, and lasted 9 days. Compared with the control, the cumulative NH
volatilization decreased by 15.20%, and the contents of ammonium, nitrate, and Kjeldahl nitrogen increased by 242%, 10.54% and 10.62%, respectively, at the end of composting. At the same time, the cumulative carbon dioxide emissions increased by 13.47 %, and the total organic carbon content was reduced by 1.4%. The C/N ratio and seed germination index for the compost product were 8.84 and 95.46%, respectively, which met the requirements of maturity, at the end of composting. During the composting, NTA was hydrolyzed to produce H
produced by the ammoniation reaction. It was conducive to the preservation of nitrogen in the heap and improved the fertilizer efficiency of the compost products. The research result provided a useful reference for the optimization of the nitrogen retention during aerobic composting.
.
Schematic diagrams of composting reactor
Changes in physicochemical properties of piles
Changes in TKN and organic nitrogen content of piles
cumulative emission of piles
Changes in C/N ratio and GI of piles
堆肥过程中理化性质与氨排放之间的冗余分析(RDA)
Redundancy analysis (RDA) of physicochemical properties and ammonia emissions during the composting
[1] | CHEN M L, HUANG Y M, LIU H J, et al. Impact of different nitrogen source on the compost quality and greenhouse gas emissions during composting of garden waste[J]. Process Safety and Environmental Protection, 2019, 124: 326-335. doi: 10.1016/j.psep.2019.03.006 |
[2] | 张凤. 以浮石为调理剂的脱水污泥好氧堆肥效果研究[D]. 西安: 西安建筑科技大学, 2018. |
[3] | 姜继韶, 尧倩. 酸性物质对猪粪秸秆堆肥过程中氮素转化的影响[J]. 环境科学, 2017, 38(3): 1272-1278. |
[4] | AWASTHI M K, WANG M J, CHEN H Y, et al. Heterogeneity of biochar amendment to improve the carbon and nitrogen sequestration through reduce the greenhouse gases emissions during sewage sludge composting[J]. Bioresource Technology, 2017, 224: 428-438. doi: 10.1016/j.biortech.2016.11.014 |
[5] | 张红玉, 李国学, 袁京, 等. 固氮添加剂降低厨余垃圾堆肥中NH3和H2S排放[J]. 农业工程学报, 2013, 29(23): 173-178. doi: 10.3969/j.issn.1002-6819.2013.23.024 |
[6] | KURODA K, TANAKA A, FURUHASHI K, et al. Application of Bacillus sp. TAT105 to reduce ammonia emissions during pilot-scale composting of swine manure[J]. Bioscience Biotechnology and Biochemistry, 2017, 81: 2400-2406. doi: 10.1080/09168451.2017.1389607 |
[7] | 胡庆昊, 李秀芬, 陈坚, 等. 氨三乙酸促进厌氧消化产甲烷的动力学研究[J]. 中国环境科学, 2010, 30(6): 747-751. |
[8] | WANG K, LIU Y H, SONG Z G, et al. Effects of biodegradable chelator combination on potentially toxic metals leaching efficiency in agricultural soils[J]. Ecotoxicology and Environmental Safety, 2019, 182: 109399. doi: 10.1016/j.ecoenv.2019.109399 |
[9] | 蔡璐, 陈同斌, 刘洪涛, 等. 污泥堆肥含水率监测方法的选择与探讨[J]. 环境科学学报, 2012, 32(6): 1281-1288. |
[10] | 薛兆骏, 周国亚, 俞肖峰, 等. 超高温自发热好氧堆肥工艺处理剩余污泥[J]. 中国环境科学, 2017, 37(9): 3399-3406. doi: 10.3969/j.issn.1000-6923.2017.09.025 |
[11] | 颜瑾, 李燕, 熊仁, 等. 农村不同类型有机固体废弃物混合堆肥配比优化[J]. 环境工程学报, 2018, 12(7): 2106-2113. doi: 10.12030/j.cjee.201712100 |
[12] | 鲍士旦, 江荣风, 杨超光, 等. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000: 49-61. |
[13] | 高云航, 勾长龙, 王雨琼, 等. 低温复合菌剂对牛粪堆肥发酵影响的研究[J]. 环境科学学报, 2014, 34(12): 3166-3170. |
[14] | 胡红伟, 李吕木, 钱坤, 等. 发酵菌剂接种量对堆肥理化性质和有关酶活的影响[J]. 农业环境科学学报, 2013, 32(6): 1261-1270. |
[15] | 李天枢. 畜粪堆肥高效复合微生物菌剂的研制与应用[D]. 杨凌: 西北农林科技大学, 2013. |
[16] | 黄翠. 堆肥嗜热纤维分解菌的筛选鉴定及其强化堆肥研究[D]. 长沙: 湖南大学, 2010. |
[17] | JIANG J S, KANG K, CHEN D, et al. Impacts of delayed addition of N-rich and acidic substrates on nitrogen loss and compost quality during pig manure composting[J]. Waste Management, 2018, 72: 161-167. doi: 10.1016/j.wasman.2017.11.025 |
[18] | LI R H, WANG J J, ZHANG Z Q, et al. Nutrient transformations during composting of pig manure with bentonite[J]. Bioresource Technology, 2012, 121: 362-368. doi: 10.1016/j.biortech.2012.06.065 |
[19] | 常瑞雪, 甘晶晶, 陈清, 等. 碳源调理剂对黄瓜秧堆肥进程和碳氮养分损失的影响[J]. 农业工程学报, 2016, 32(S2): 254-259. |
[20] | 侯超, 李永彬, 徐鹏翔, 等. 筒仓式堆肥反应器不同通风量对堆肥效果的影响[J]. 环境工程学报, 2017, 11(8): 4737-4744. doi: 10.12030/j.cjee.201606062 |
[21] | 周莉娜, 蔡函臻, 李荣华, 等. 膨润土调质对污泥堆肥的脱毒及重金属钝化和雌酮消除作用[J]. 环境科学, 2017, 38(7): 3061-3069. |
[22] | 周江明, 王利通, 徐庆华, 等. 适宜猪粪与菌渣配比提高堆肥效率[J]. 农业工程学报, 2015, 31(7): 201-207. |
[23] | 吴飞龙, 叶美锋, 吴晓梅, 等. 添加菌糠对猪粪渣堆肥过程及氨排放的影响[J]. 农业环境科学学报, 2017, 36(3): 598-604. doi: 10.11654/jaes.2016-1261 |
[24] | GARCIA C, HERNANDEZ T, COSTA F, et al. The influence of composting and maturation processes on the heavy-metal extractability from some organic wastes[J]. Biological Wastes, 1990, 31(4): 291-301. doi: 10.1016/0269-7483(90)90086-8 |
[25] | 杨文卿, 陈潇川, 郭梓波, 等. 聚丙烯酸钠作为调理剂对好氧堆肥的保氮影响[J]. 环境工程学报, 2014, 8(10): 4439-4444. |
[26] | PAN J T, CAI H Z, ZHANG Z Q, et al. Comparative evaluation of the use of acidic additives on sewage sludge composting quality improvement, nitrogen conservation, and greenhouse gas reduction[J]. Bioresource Technology, 2018, 270: 467-475. doi: 10.1016/j.biortech.2018.09.050 |
[27] | JIANG J S, HUANG Y M, LIU X L, et al. The effects of apple pomace, bentonite and calcium superphosphate on swine manure aerobic composting[J]. Waste Management, 2014, 34(9): 1595-1602. doi: 10.1016/j.wasman.2014.05.002 |
[28] | 周少奇, 李端. 污泥堆肥过程中氮素损失机理及保氮技术[J]. 土壤, 2003, 35(6): 481-484. doi: 10.3321/j.issn:0253-9829.2003.06.008 |
[29] | LU Y J, WU X W, GUO J F, et al. Characteristics of municipal solid waste and sewage sludge co-composting[J]. Waste Management, 2009, 29(3): 1152-1157. doi: 10.1016/j.wasman.2008.06.030 |
[30] | 李森, 罗雪梅, 涂卫国, 等. 保氮剂对水葫芦堆肥进程及氮素损失的影响[J]. 应用生态学报, 2017, 28(4): 1197-1203. |
[31] | WANG Q, LI R H, CAI H Z, et al. Improving pig manure composting efficiency employing Ca-bentonite[J]. Ecological Engineering, 2016, 87: 157-161. doi: 10.1016/j.ecoleng.2015.11.032 |
[32] | MAO H, ZHANG H Y, FU Q, et al. Effects of four additives in pig manure composting on greenhouse gas emission reduction and bacterial community change[J]. Bioresource Technology, 2019, 292: 121896. doi: 10.1016/j.biortech.2019.121896 |
[33] | MENG L Q, LI W G, ZHANG S M, et al. Effects of sucrose amendment on ammonia assimilation during sewage sludge composting[J]. Bioresource Technology, 2016, 210: 160-166. doi: 10.1016/j.biortech.2016.01.094 |
[34] | 贺琪, 李国学, 张亚宁, 等. 高温堆肥过程中的氮素损失及其变化规律[J]. 农业环境科学学报, 2005, 34(1): 169-173. doi: 10.3321/j.issn:1672-2043.2005.01.037 |
[35] | 刘媛媛, 徐智, 陈卓君, 等. 外源添加磷石膏对堆肥碳组分及腐殖质品质的影响[J]. 农业环境科学学报, 2018, 37(11): 2483-2490. doi: 10.11654/jaes.2018-0377 |
[36] | AWASTHI M K, WANG Q, REN X N, et al. Role of biochar amendment in mitigation of nitrogen loss and greenhouse gas emission during sewage sludge composting[J]. Bioresource Technology, 2016, 219: 270-280. doi: 10.1016/j.biortech.2016.07.128 |
[37] | 姜继韶, 党森, 王撵, 等. 过磷酸钙和腐烂苹果联合添加对猪粪堆肥过程中碳素转化和腐熟的影响[J]. 环境科学学报, 2018, 38(11): 4422-4430. |
[38] | 陈雪娇, 王宇蕴, 徐智, 等. 不同磷石膏添加比例对稻壳与油枯堆肥过程的影响及基质化利用的评价[J]. 农业环境科学学报, 2018, 37(5): 1001-1008. doi: 10.11654/jaes.2017-1463 |
[39] | LI Y Y, HAN Y Y, ZHANG Y R, et al. Factors affecting gaseous emissions, maturity, and energy efficiency in composting of livestock manure digestate[J]. Science of the Total Environment, 2020, 731: 139-157. |
[40] | 尚双华. 设施土壤氮素积累条件下番茄枯萎病发生的微生态机制研究[D]. 沈阳: 沈阳农业大学, 2016. |