2.北京师范大学珠海校区未来教育学院,珠海 519000
2.College of Education for the Future, Beijing Normal University at Zhuhai, Zhuhai 519000, China
结构进行修饰以提高其光催化活性。通过X射线衍射(XRD),扫描电子显微镜(SEM),透射电子显微镜(TEM),X射线能谱(XPS)和紫外-可见漫反射光谱(UV-vis)对其进行了表征,对Cu掺杂BiVO
光催化剂经5次重复使用后,对橙黄Ⅱ的降解效率仍然可以达到78.3%以上,其展现出优异的催化稳定性。
Aiming at the problems of easy recombination of photocarriers and restriction of catalytic activity of most semiconductor visible light catalysts, Cu-BiVO
was successfully prepared through one-step hydro-thermal method by doping copper into the structure of BiVO
for its activity enhancement. Cu-BiVO
was characterized by XRD, SEM, TEM, XPS and UV-vis Method. The photocatalytic activity and stability of Cu dopped BiVO
catalyst were detected. The results showed that the prepared Cu-BiVO
increased. Under the irradiation of visible LED light, Cu-BiVO
could activate peroxymonosulfate (PMS) and photocatalytic degrade orangeⅡ. The results revealed that the highest degradation efficiency of orange Ⅱ occurred at Cu-BiVO
and 60 min oxidation. The catalytic performance of Cu-BiVO
. And the degradation efficiency of orange Ⅱ could still maintain over 78.3% after Cu-BiVO
. By the introduce of copper element into the structure of BiVO
, the separation efficiency of photo generated electrons and holes increased, which enhanced the catalytic activity of BiVO
an effective photocatalytic catalyst with good catalytic and reusable properties.
.
Effect of radical scavengers on the degradation of orange Ⅱ
[1] | 县涛, 邸丽景, 马俊, 等. 纳米BiVO4/BaTiO3复合材料光催化降解性能[J]. 复合材料学报, 2019, 36(3): 756-763. |
[2] | 邵艳秋, 王丽杰, 郑友进, 等. Ba2+掺杂BiVO4光催化降解罗丹明B的性能研究[J]. 化工新型材料, 2020, 48(2): 211-214. |
[3] | 张博, 张太亮, 谢晋, 等. Ag3PO4@ MMT复合催化剂的制备及其可见光催化降解罗丹明B[J]. 应用化工, 2019, 48(11): 2647-2651. doi: 10.3969/j.issn.1671-3206.2019.11.027 |
[4] | 刘馨钰, 张永丽, 张怡, 等. 铁酸铋可见光催化过一硫酸盐去除金橙Ⅱ[J]. 化学研究与应用, 2019, 31(5): 887-893. doi: 10.3969/j.issn.1004-1656.2019.05.017 |
[5] | 张明明, 李静, 龚焱, 等. 铁酸锰纳米球修饰石墨相氮化碳光催化活化过一硫酸盐去除双酚A[J]. 环境工程学报, 2019, 13(1): 9-19. doi: 10.12030/j.cjee.201807189 |
[6] | 王霁, 董正玉, 吴丽颖, 等. 纳米铁酸铜催化剂活化过一硫酸盐降解苯胺废水[J]. 环境污染与防治, 2019, 41(3): 334-338. |
[7] | 刘杨, 郭洪光, 李伟, 等. 可见光下TiO2协同过硫酸盐光催化降解罗丹明[J]. 中南民族大学学报(自然科学版), 2019, 38(1): 34-38. |
[8] | 张塞, 邹英桐, 陈中山, 等. 可见光驱动RGO/g-C3N4活化过硫酸盐降解水中双酚A[J]. 无机材料学报, 2020, 35(3): 329-336. |
[9] | OMRANI N, ALIREZA N E. A comprehensive study on the enhanced photocatalytic activity of Cu2O/BiVO4/WO3 nanoparticles[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 389: 112223. doi: 10.1016/j.jphotochem.2019.112223 |
[10] | LE S, LI W, WANG Y, et al. Carbon dots sensitized 2D-2D heterojunction of BiVO4/Bi3TaO7 for visible light photocatalytic removal towards the broad-spectrum antibiotics[J]. Journal of Hazardous Materials, 2019, 376: 1-11. doi: 10.1016/j.jhazmat.2019.04.088 |
[11] | GUO R, YAN A, XU J, et al. Effects of morphology on the visible-light-driven photocatalytic and bactericidal properties of BiVO4/CdS heterojunctions: A discussion on photocatalysis mechanism[J]. Journal of Alloys and Compounds, 2020, 817: 153246. doi: 10.1016/j.jallcom.2019.153246 |
[12] | GAO L, LONG X, WEI S, et al. Facile growth of AgVO3 nanoparticles on Mo-doped BiVO4 film for enhanced photoelectrochemical water oxidation[J]. Chemical Engineering Journal, 2020, 378: 122193. |
[13] | BACHA A U R, NABI I, CHENG H, et al. Photoelectrocatalytic degradation of endocrine-disruptor bisphenol A with significantly activated peroxymonosulfate by Co-BiVO4 photoanode[J]. Chemical Engineering Journal, 2020, 389: 124482. doi: 10.1016/j.cej.2020.124482 |
[14] | FANG W, TAO R, JIN Z, et al. Sandwich-type cobalt-polyoxometalate as an effective hole extraction layer for enhancing BiVO4-based photoelectrochemical oxidation[J]. Journal of Alloys and Compounds, 2019, 797: 140-147. doi: 10.1016/j.jallcom.2019.05.063 |
[15] | ZHONG X, ZHANG K X, WU D, et al. Enhanced photocatalytic degradation of levofloxacin by Fe-doped BiOCl nanosheets under LED light irradiation[J]. Chemical Engineering Journal, 2020, 383: 123148. doi: 10.1016/j.cej.2019.123148 |
[16] | SAMSUDIN M F R, BASHIRI R, MOHAMED N M, et al. Tailoring the morphological structure of BiVO4 photocatalyst for enhanced photoelectrochemical solar hydrogen production from natural lake water[J]. Applied Surface Science, 2020, 504: 144417. doi: 10.1016/j.apsusc.2019.144417 |
[17] | DONG S, LEE G J, ZHOU R, et al. Synthesis of g-C3N4/BiVO4 heterojunction composites for photocatalytic degradation of nonylphenol ethoxylate[J]. Separation and Purification Technology, 2020, 250: 117202. doi: 10.1016/j.seppur.2020.117202 |
[18] | YANG Y, ZHANG W, LIU R, et al. Preparation and photocatalytic properties of visible light driven Ag-AgBr-RGO composite[J]. Separation and Purification Technology, 2018, 190: 278-287. doi: 10.1016/j.seppur.2017.09.003 |
[19] | SANCHEZ O A, RODRIGUEZ J L, BARRERA-ANDRADE J M, et al. High performance of Ag/BiVO4 photocatalyst for 2, 4-dichlorophenoxyacetic acid degradation under visible light[J]. Applied Catalysis A: General, 2020, 600: 117625. doi: 10.1016/j.apcata.2020.117625 |
[20] | NAING H H, WANG K, LI Y, et al. Sepiolite supported BiVO4 nanocomposites for efficient photocatalytic degradation of organic pollutants: Insight into the interface effect towards separation of photogenerated charges[J]. Science of the Total Environment, 2020, 722: 137825. doi: 10.1016/j.scitotenv.2020.137825 |
[21] | LI Y, LIAO D, LI T, et al. Plasmonic Z-scheme Pt-Au/BiVO4 photocatalyst: Synergistic effect of crystal-facet engineering and selective loading of Pt-Au cocatalyst for improved photocatalytic performance[J]. Journal of Colloid and Interface Science, 2020, 570: 232-241. doi: 10.1016/j.jcis.2020.02.093 |
[22] | REGMI C, KSHETRI Y K, PANDEY R P, et al. Visible-light-driven S and W co-doped dendritic BiVO4 for efficient photocatalytic degradation of naproxen and its mechanistic analysis[J]. Molecular Catalysis, 2018, 453: 149-160. doi: 10.1016/j.mcat.2018.05.008 |
[23] | CHEN R, WANG W, JIANG D, et al. Hydrothermal synthesis of Nd3+-doped heterojunction ms/tz-BiVO4 and its enhanced photocatalytic performance[J]. Journal of Physics and Chemistry of Solids, 2018, 117: 28-35. doi: 10.1016/j.jpcs.2018.02.010 |
[24] | ULLAH H, TAHIR A A, MALLICK T K. Structural and electronic properties of oxygen defective and Se-doped p-type BiVO4 (001) thin film for the applications of photocatalysis[J]. Applied Catalysis B: Environmental, 2018, 224: 895-903. doi: 10.1016/j.apcatb.2017.11.034 |
[25] | 潘柏岳, 陈龙, 黄韬博, 等. 核壳结构 KNbO3@Co(OH)2的制备及其活化过一硫酸盐降解帕珠沙星的研究[J]. 环境科学学报, 2020, 40(6): 2025-2036. |
[26] | HUANG C, WANG Y, GONG M, et al. α-MnO2/palygorskite composite as an effective catalyst for heterogeneous activation of peroxymonosulfate (PMS) for the degradation of rhodamine B[J]. Separation and Purification Technology, 2020, 230: 115877. doi: 10.1016/j.seppur.2019.115877 |
[27] | LIAO Z, ZHU J, JAWAD A, et al. Degradation of phenol using peroxymonosulfate activated by a high efficiency and stable CoMgAl-LDH catalyst[J]. Materials, 2019, 12(6): 968. doi: 10.3390/ma12060968 |
[28] | QI C, LIU X, MA J, et al. Activation of peroxymonosulfate by base: Implications for the degradation of organic pollutants[J]. Chemosphere, 2016, 151: 280-288. doi: 10.1016/j.chemosphere.2016.02.089 |
[29] | LIN X, MA Y, WAN J, et al. Co0.59Fe0.41P nanocubes derived from nanoscale metal-organic frameworks for removal of diethyl phthalate by activation of peroxymonosulfate[J]. Applied Catalysis A: General, 2020, 589: 117307. doi: 10.1016/j.apcata.2019.117307 |
[30] | SOLIS R R, RIVAS F J, CHAVEZ A M, et al. Peroxymonosulfate/solar radiation process for the removal of aqueous microcontaminants. Kinetic modeling, influence of variables and matrix constituents[J]. Journal of Hazardous Materials, 2020, 400: 123118. doi: 10.1016/j.jhazmat.2020.123118 |
[31] | LIU F, ZHOU H, PAN Z, et al. Degradation of sulfamethoxazole by cobalt-nickel powder composite catalyst coupled with peroxymonosulfate: Performance, degradation pathways and mechanistic consideration[J]. Journal of Hazardous Materials, 2020, 400: 123322. doi: 10.1016/j.jhazmat.2020.123322 |
[32] | SUN Q T, XU B D, YANG J, et al. Layered oxides supported Co-Fe bimetal catalyst for carbamazepine degradation via the catalytic activation of peroxymonosulfate[J]. Chemical Engineering Journal, 2020, 400: 125899. doi: 10.1016/j.cej.2020.125899 |
[33] | CHEN F, WU X L, YANG L, et al. Efficient degradation and mineralization of antibiotics via heterogeneous activation of peroxymonosulfate by using graphene supported single-atom Cu catalyst[J]. Chemical Engineering Journal, 2020, 394: 124904. doi: 10.1016/j.cej.2020.124904 |
[34] | WANG Y, LIU C, ZHANG Y, et al. Sulfate radical-based photo-Fenton reaction derived by CuBi2O4 and its composites with α-Bi2O3 under visible light irradiation: Catalyst fabrication, performance and reaction mechanism[J]. Applied Catalysis B: Environmental, 2018, 235: 264-273. doi: 10.1016/j.apcatb.2018.04.058 |
[35] | MA Q, ZHANG H, ZHANG X, et al. Synthesis of magnetic CuO/MnFe2O4 nanocompisite and its high activity for degradation of levofloxacin by activation of persulfate[J]. Chemical Engineering Journal, 2019, 360: 848-860. doi: 10.1016/j.cej.2018.12.036 |
[36] | GAO X, WANG Z, FU F, et al. Effects of pH on the hierarchical structures and photocatalytic performance of Cu-doped BiVO4 prepared via the hydrothermal method[J]. Materials Science in Semiconductor Processing, 2015, 35: 197-206. doi: 10.1016/j.mssp.2015.03.012 |