成都理工大学核技术与自动化工程学院,地学核技术四川省重点实验室,成都 610059
Applied Nuclear Techniques in Geosciences Key Laboratory of Sichuan Province, College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610059, China
地下建筑是城市空间的重要组成部分,氡气是值得关注的地下建筑环境污染物之一。对成都市某地下建筑进行了连续2年的氡浓度监测,通过频数分布和相关性分析了地下建筑氡浓度的季节变化规律以及氡浓度与气温、气压等因素之间的关系。结果表明: 该地下建筑内的氡浓度为8.9~83.1 Bq·m
,环境氡及其子体所致公众的平均年有效剂量为0.643 mSv,低于《地下建筑氡及其子体控制标准》(GBZ 116-2002)中地下建筑氡浓度限值;氡气浓度呈现明显的季节性变化规律;氡浓度与温度和湿度正相关,与大气压负相关。基于监测数据,建议地下停车场夏季需要加强通风,并在地下停车场开展连续氡浓度监测,根据氡气浓度调节通风设备功率。
Underground buildings are an important part of cities and radon is a key air pollutant worthy of attention. This study investigates the seasonal pattern of radon concentration and its relationships with factors such as temperature and atmospheric pressure. This is performed by probability distribution and correlation analysis based on two years’ radon monitoring in an underground parking lot in Chengdu. Results show that the concentration of radon in the underground parking lot is in the range of 8.9 Bq·m
. The public effective dose caused by radon and its progenies is 0.643 mSv, which is below the regulatory limit in the Standard for Controlling Radon and Its Progenies in Underground Space (GBZ 116-2002). The change in radon concentration also shows an evident seasonal pattern. The radon concentration is found to be positively correlated with temperature and humidity and negatively correlated with atmospheric pressure. Based on the measuring data, it is suggested to strengthen ventilation in the underground parking lot in summer. To save energy and ensure public health, continuous radon concentration monitoring can be carried out in the underground parking lot, and the power of ventilation equipment can be adjusted according to the radon concentration.
.
Structure of the underground parking lot
Distribution of radon concentration frequency
去除高值后的上午氡浓度、湿度、大气压频数分布
Distribution of radon concentration, humidity and atmospheric pressure frequency in the morning after removing high values
Relationship between radon concentration and environmental factors
Annual trend of radon concentration in the underground parking lot
Monthly distribution of radon concentration
Correlation analysis results of radon concentration with different environmental factors
[1] | 段文峰, 顾尚义, 杨兵. 民用建筑工程室内环境中氡气的来源、危害及防护[J]. 广东化工, 2011, 38(10): 86-87. doi: 10.3969/j.issn.1007-1865.2011.10.046 |
[2] | 张延安, 李寿兴. 地下建筑中氡气对人类健康的危害及其防护[J]. 中国建筑防水, 1997(6): 6-8. |
[3] | 杨晓刚, 王睿, 黄伟亮. 基于国内典型城市对比的地下空间开发利用现状及问题分析[J]. 地学前缘, 2019, 26(3): 69-75. |
[4] | CHEN J, FORD K L. A study on the correlation between soil radon potential and average indoor radon potential in Canadian cities[J]. Journal of Environmental Radioactivity, 2017, 166: 152-156. doi: 10.1016/j.jenvrad.2016.01.018 |
[5] | WATSON R J, SMETHURST M A, GANERD G V, et al. The use of mapped geology as a predictor of radon potential in Norway[J]. Journal of Environmental Radioactivity, 2017, 166: 341-354. doi: 10.1016/j.jenvrad.2016.05.031 |
[6] | 张静波, 王畅, 莫素芳, 等. 广州某地下人防工事空气氡浓度监测分析[J]. 中国辐射卫生, 2018, 27(5): 496-498. |
[7] | 王虹, 石梦蝶, 白文娟, 等. 武汉市地铁内氡浓度检测结果分析[J]. 公共卫生与预防医学, 2018, 29(2): 100-101. doi: 10.3969/j.issn.1006-2483.2018.02.027 |
[8] | 吕文亭, 朱浩, 郦胜, 等. 上海地下公共空间环境氡浓度调查[J]. 上海预防医学, 2012, 24(4): 197-200. doi: 10.3969/j.issn.1004-9231.2012.04.013 |
[9] | 米宇豪, 马豪, 曾志, 等. 中国锦屏地下实验室空气氡浓度监测(2010—2011)[J]. 中国科技论文, 2015, 10(23): 2783-2785. doi: 10.3969/j.issn.2095-2783.2015.23.019 |
[10] | 张林, 张静波, 莫素芳, 等. 广州地铁二、八号线车站氡浓度水平调查[J]. 中国辐射卫, 2017, 26(3): 337-339. |
[11] | 彭贝, 刘玉洁, 熊琦琪, 等. 长沙市地下车库氡污染的现状及对策研究[J]. 中外建筑, 2019(4): 55-58. |
[12] | 朱晓翔, 周程, 徐萍. 南京市地铁车站氡浓度水平的初步调查[J]. 环境监测管理与技术, 2012, 24(1): 29-31. doi: 10.3969/j.issn.1006-2009.2012.01.008 |
[13] | 郦胜, 潘羿, 戴铁兵, 等. 某地下建筑物空气氡浓度水平特征[J]. 环境与职业医学, 2013, 30(5): 383-385. |
[14] | 中华人民共和国卫生部. 地下建筑氡及其子体控制标准: GBZ 116-2002[S]. 北京. 中国标准出版社, 2002. |
[15] | 朱俊, 张文勇, 潘亚玲, 等. 成都市居民住宅内氡浓度水平调查[J]. 职业卫生与病伤, 2002, 17(3): 207. doi: 10.3969/j.issn.1006-172X.2002.03.027 |
[16] | 王志祥, 柏传志. 基于SPSS的基础教育与评价: 第四辑.[M]. 苏州: 苏州大学出版社, 2016. |
[17] | 李晓燕, 郑宝山, 王燕, 等. 我国部分城市地下工程空气中的氡水平[J]. 辐射防护, 2007, 27(6): 368-374. |
[18] | 张忠相, 李向阳, 邓文辉, 等. 温度对多孔射气介质氡析出影响试验研究[J]. 工业安全与环保, 2016, 42(6): 30-32. doi: 10.3969/j.issn.1001-425X.2016.06.008 |
[19] | 项麦祺. 室内外放射性氡的变化特征及影响因素[D]. 西安: 长安大学, 2017. |
[20] | TANNER A B. Radon migration in the ground: A supplementary review[J]. Natural Radiation Environment, 1980, 1: 5-56. |
[21] | 王康, 姚玉霞, 李松林, 等. 气温气压与氡浓度短期变化的相关性分析[J]. 华南地震, 2018, 38(3): 91-98. |
[22] | 曹玲玲, 高安泰. 气温气压与断层气氡浓度短期变化的相关性分析[J]. 地震学报, 2014, 36(4): 719-729. doi: 10.3969/j.issn.0253-3782.2014.04.017 |
[23] | 曾晔, 罗忠辉, 田新, 等. 坑道氡浓度监测及所致剂量估算[J]. 核电子学与探测技术, 2018, 38(5): 694-698. doi: 10.3969/j.issn.0258-0934.2018.05.020 |
[24] | 徐立鹏, 葛良全, 曾兵, 等. 成都地区室内氡浓度调查[J]. 辐射防护, 2012, 32(3): 177-180. |
[25] | 孙世荃. 联合国原子辐射效应科学委员会(UNSCEAR)1982年报告: 电离辐射: 源与生物效应内容介绍[J]. 辐射防护通讯, 1983(1): 1-14. |
[26] | TIAN D Y. Indoor and outdoor air radon concentration level in China[J]. Proceedings of Indoor Air, 1993, 4: 459-463. |
[27] | 国家质量监督检验检疫总局. 电离辐射防护与辐射源安全基本标准: GB 18871-2002[S]. 北京: 中国标准出版社, 2003. |
[28] | 朱凤波. 地下工程围护结构防氡要求及构造分析[J]. 江西化工, 2019(3): 127-128. doi: 10.3969/j.issn.1008-3103.2019.03.042 |