删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

新型电芬顿反应器处理酸性矿山废水中的Sb(Ⅲ)

本站小编 Free考研考试/2021-12-31

柴友正1,2,,
秦普丰1,2,,,
高山2,
吴志斌2,
李天佑1,2,
戴之健1,2
1.湖南省灌溉水源水质污染净化技术工程研究中心,长沙 410128
2.湖南农业大学资源环境学院,长沙 410128
作者简介: 柴友正(1995—),男,硕士研究生。研究方向:矿山废水与地下水污染控制。E-mail:chaiyouzheng@126.com.
通讯作者: 秦普丰,qinpufeng@126.com ;

中图分类号: X703


Sb () treatment in acid mine wastewater by a novel electro-Fenton reactor

CHAI Youzheng1,2,,
QIN Pufeng1,2,,,
GAO Shan2,
WU Zhibin2,
LI Tianyou1,2,
DAI Zhijian1,2
1.Hunan Engineering & Technology Research Center for Irrigation Water Purification, Changsha 410128, China
2.College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
Corresponding author: QIN Pufeng,qinpufeng@126.com ;

CLC number: X703

-->

摘要
HTML全文
(10)(0)
参考文献(35)
相关文章
施引文献
资源附件(0)
访问统计

摘要:为了高效地去除酸性矿山废水中的Sb(Ⅲ),采用一种基于电芬顿反应的新型反应器进行处理。探讨了新型反应器各项性能(去除率、能耗、·OH产量)的优势;分别考察了电流强度、pH、板间距、曝气速率、电解质浓度对Sb(Ⅲ)去除效果的影响;使用水杨酸和苯醌对电芬顿体系中Sb(Ⅲ)的去除机理进行了分析;并探究新型电芬顿反应器对实际废水中的Sb(Ⅲ)处理效果。结果表明:与吸附、电氧化、传统电芬顿法相比,新型反应器在Sb(Ⅲ)的处理中更加高效,并且能耗更低,通过阴极旋转能够提高·OH的产量,增强电芬顿反应氧化能力;在电流强度为120 mA,pH为3,板间距为2 cm,曝气速率为90 mL·min?1,电解质浓度为100 mg·L?1的最佳反应条件下,Sb(Ⅲ)废水去除率接近100%;在电芬顿反应体系中,·OH和HO2·能够共同促进Sb(Ⅲ)的去除;通过该反应器处理实际废水,Sb(Ⅲ)去除率能够达到89%。以上结果可为新型电芬顿反应器高效处理含Sb(Ⅲ)的酸性矿山废水提供参考。
关键词: Sb(Ⅲ)/
酸性矿山废水/
电芬顿/
新型反应器/
去除机理

Abstract:In order to remove Sb(Ⅲ) from acid mine wastewater efficiently, a novel reactor based on electro-Fenton reaction was used to treat acid mine wastewater. The advantages of various performances (removal rate, energy consumption, and ·OH output) of the new reactor were discussed. The effects of current intensity, pH, plate spacing, aeration rate, and electrolyte concentration on the removal rate of Sb(Ⅲ) were investigated. The removal mechanism of Sb(Ⅲ) in the electro-Fenton system was analyzed by using salicylic acid and benzoquinone. The Sb(Ⅲ) treatment in actual wastewater by the novel electro-Fenton reactor was also explored. The results showed that compared with absorption, electro-oxidation, and traditional electro-Fenton method, the novel reactor presented higher efficiency and lower cost in Sb(Ⅲ) treatment. The cathode rotation could increase the output of ·OH and enhance the oxidation capacity of the electro-Fenton system. Under the optimal conditions as follows: current intensity of 120 mA, pH 3, plate spacing of 2 cm, aeration rate of 90 mL·min?1, electrolyte concentration of 100 mg·L?1, the Sb(Ⅲ) removal efficiency from wastewater could approach 100%. ·OH and HO2· could promote Sb(Ⅲ) removal together in the electro-Fenton system. The Sb(Ⅲ) removal efficiency in actual wastewater could reach 89% by the novel reactor. The above results can provide references for the efficient treatment of Sb(Ⅲ)-containing acid mine wastewater by the novel electro-Fenton reactor.
Key words:Sb(Ⅲ)/
acid mine wastewater/
electro-Fenton/
novel reactor/
removal mechanism.

加载中

图1电芬顿反应装置
Figure1.Device of electro-Fenton reaction


下载: 全尺寸图片幻灯片


图2新型反应器在不同条件下各项性能的对比
Figure2.Comparison of performance for the novel reactor under different conditions


下载: 全尺寸图片幻灯片


图3pH对去除率的影响
Figure3.Effect of pH on the removal efficiency


下载: 全尺寸图片幻灯片


图4电流强度对去除率的影响
Figure4.Effect of current intensity on the removal efficiency


下载: 全尺寸图片幻灯片


图5板间距对去除率的影响
Figure5.Effect of plate spacing on the removal efficiency


下载: 全尺寸图片幻灯片


图6曝气速率对去除率的影响
Figure6.Effect of aeration rate on the removal efficiency


下载: 全尺寸图片幻灯片


图7电解质浓度对去除率的影响
Figure7.Effect of electrolyte concentration on the removal efficiency


下载: 全尺寸图片幻灯片


图8初始处理浓度对去除率的影响
Figure8.Effect of initial treatment concentration on the removal efficiency


下载: 全尺寸图片幻灯片


图9电芬顿反应中Sb()的去除机理
Figure9.Removal mechanism of Sb(Ⅲ) in electro-Fenton reaction


下载: 全尺寸图片幻灯片


图10含Sb()模拟废水与实际废水去除效果的对比
Figure10.Comparison of the removal effects between simulated wastewater and actual wastewater


下载: 全尺寸图片幻灯片


[1] ZHANG G, OUYANG X, LI H, et al. Bioremoval of antimony from contaminated waters by a mixed batch culture of sulfate-reducing bacteria[J]. International Biodeterioration & Biodegradation, 2016, 115: 148-155.
[2] HARGREAVES A J, VALE P, WHELAN J, et al. Mercury and antimony in wastewater: Fate and treatment[J]. Water, Air & Soil Pollution, 2016, 227: 89.
[3] MUBARAK H, CHAI L Y, MIRZA N, et al. Antimony (Sb) pollution and removal techniques: Critical assessment of technologies[J]. Toxicological & Environmental Chemistry, 2015, 97(10): 1296-1318.
[4] VERBINNEN B, BLOCK C, LIEVENS P, et al. Simultaneous removal of molybdenum, antimony and selenium oxyanions from wastewater by adsorption on supported magnetite[J]. Waste and Biomass Valorization, 2013, 4(3): 635-645. doi: 10.1007/s12649-013-9200-8
[5] ASHLEY P M, CRAW D, GRAHAM B P, et al. Environmental mobility of antimony around mesothermal stibnite deposits, New South Wales, Australia and southern New Zealand[J]. Journal of Geochemical Exploration, 2003, 77(1): 1-14. doi: 10.1016/S0375-6742(02)00251-0
[6] GUO W, FU Z, WANG H, et al. Removal of antimonate (Sb(V)) and antimonite (Sb(III)) from aqueous solutions by coagulation-flocculation-sedimentation (CFS): Dependence on influencing factors and insights into removal mechanisms[J]. Science of the Total Environment, 2018, 644: 1277-1285. doi: 10.1016/j.scitotenv.2018.07.034
[7] DU X, QU F, LIANG H, et al. Removal of antimony (III) from polluted surface water using a hybrid coagulation-flocculation-ultrafiltration (CF-UF) process[J]. Chemical Engineering Journal, 2014, 254: 293-301. doi: 10.1016/j.cej.2014.05.126
[8] SAITO T, TSUNEDA S, HIRATA A, et al. Removal of antimony (III) using polyol-ligand-containing porous hollow-fiber membranes[J]. Separation Science and Technology, 2004, 39(13): 3011-3022. doi: 10.1081/SS-200033727
[9] TERRY L R, KULP T R, WIATROWSKI H, et al. Microbiological oxidation of antimony (Ⅲ) with oxygen or nitrate by bacteria isolated from contaminated mine sediments[J]. Applied and Environment Microbiology, 2015, 81(24): 8478-8488. doi: 10.1128/AEM.01970-15
[10] ZHU J, WU F, PAN X, et al. Removal of antimony from antimony mine flotation wastewater by electrocoagulation with aluminum electrodes[J]. Journal of Environmental Sciences, 2011, 23(7): 1066-1071. doi: 10.1016/S1001-0742(10)60550-5
[11] LIU Y, ZHANG J, LIU F, et al. Ultra-rapid detoxification of Sb(Ⅲ) using a flow-through electro-Fenton system[J]. Chemosphere, 2019, 245: 125604.
[12] MIAO Y, HAN F, PAN B, et al. Antimony(V) removal from water by hydrated ferric oxides supported by calcite sand and polymeric anion exchanger[J]. Journal of Environmental Sciences, 2014, 26(2): 307-314. doi: 10.1016/S1001-0742(13)60418-0
[13] ZHAO X, DOU X, MOHAN D, et al. Antimonate and antimonite adsorption by a polyvinyl alcohol-stabilized granular adsorbent containing nanoscale zero-valent iron[J]. Chemical Engineering Journal, 2014, 247: 250-257. doi: 10.1016/j.cej.2014.02.096
[14] SHAN C, MA Z, TONG M. Efficient removal of trace antimony(III) through adsorption by hematite modified magnetic nanoparticles[J]. Journal of Hazardous Materials, 2014, 268: 229-236. doi: 10.1016/j.jhazmat.2014.01.020
[15] 曹岛, 肖发新, 毛建伟. 铜电解液中锑氧化还原规律及其价态转化途径[J]. 铜业工程, 2013, 121(3): 11-16. doi: 10.3969/j.issn.1009-3842.2013.03.004
[16] KONG L, HU X, HE M. Mechanisms of Sb(III) oxidation by pyrite-induced hydroxyl radicals and hydrogen peroxide[J]. Environmental Science & Technology, 2015, 49(6): 3499-3505.
[17] KONG L, HE M. Mechanisms of Sb(III) photooxidation by the excitation of organic Fe(III) complexes[J]. Environmental Science & Technology, 2016, 50(13): 6974-6982.
[18] 颜军, 苟小军, 邹全付, 等. 分光光度法测定Fenton反应产生的羟基自由基[J]. 成都大学学报(自然科学版), 2009, 28(2): 91-93.
[19] ZHU R, YANG C, ZHOU M, et al. Industrial park wastewater deeply treated and reused by a novel electrochemical oxidation reactor[J]. Chemical Engineering Journal, 2015, 260: 427-433. doi: 10.1016/j.cej.2014.09.029
[20] WEN S, NIU Z, ZHANG Z, et al. In-situ synthesis of 3D-GA on titanium wire as a binder-free electrode for electro-Fenton removing of EDTA-Ni[J]. Journal of Hazardous Materials, 2018, 341: 128-137. doi: 10.1016/j.jhazmat.2017.07.014
[21] BRILLAS E, SIRES I, OTURAN M. Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry[J]. Chemical Reviews, 2009, 109: 6570-6631. doi: 10.1021/cr900136g
[22] PANIZZA M, CERISOLA G. Electro-Fenton degradation of synthetic dyes[J]. Water Research, 2009, 43(2): 339-44. doi: 10.1016/j.watres.2008.10.028
[23] HE H, ZHOU Z. Electro-Fenton process for water and wastewater treatment[J]. Critical Reviews in Environmental Science and Technology, 2017, 47(21): 2100-2131. doi: 10.1080/10643389.2017.1405673
[24] WANG C T, CHOU W L, CHUNG M H, et al. COD removal from real dyeing wastewater by electro-Fenton technology using an activated carbon fiber cathode[J]. Desalination, 2010, 253(1/2/3): 129-134.
[25] ZHOU W, RAJIC L, CHEN L, et al. Activated carbon as effective cathode material in iron-free electro-Fenton process: Integrated H2O2 electrogeneration, activation, and pollutants adsorption[J]. Electrochimica Acta, 2019, 296: 317-326. doi: 10.1016/j.electacta.2018.11.052
[26] ?ZCAN A, ATILIR ?ZCAN A, DEMIRCI Y. Evaluation of mineralization kinetics and pathway of norfloxacin removal from water by electro-Fenton treatment[J]. Chemical Engineering Journal, 2016, 304: 518-526. doi: 10.1016/j.cej.2016.06.105
[27] AHMADZADEH S, DOLATABADI M. Removal of acetaminophen from hospital wastewater using electro-Fenton process[J]. Environmental Earth Sciences, 2018, 77(2): 1-11.
[28] DIEZ A M, IGLESIAS O, ROSALES E, et al. Optimization of two-chamber photo electro Fenton reactor for the treatment of winery wastewater[J]. Process Safety and Environmental Protection, 2016, 101: 72-79. doi: 10.1016/j.psep.2015.09.010
[29] XIA G, LU Y, XU H. Electrogeneration of hydrogen peroxide for electro-Fenton via oxygen reduction using polyacrylonitrile-based carbon fiber brush cathode[J]. Electrochimica Acta, 2015, 158: 390-396. doi: 10.1016/j.electacta.2015.01.102
[30] REN G, ZHOU M, LIU M, et al. A novel vertical-flow electro-Fenton reactor for organic wastewater treatment[J]. Chemical Engineering Journal, 2016, 298: 55-67. doi: 10.1016/j.cej.2016.04.011
[31] LING T, HUANG B, ZHAO M, et al. Repeated oxidative degradation of methyl orange through bio-electro-Fenton in bioelectrochemical system (BES)[J]. Bioresource Technology, 2016, 203: 89-95. doi: 10.1016/j.biortech.2015.12.031
[32] SANTANA-MARTINEZ G, ROA-MORALES G, MARTIN DEL CAMPO E, et al. Electro-Fenton and electro-Fenton-like with in situ electrogeneration of H2O2 and catalyst applied to 4-chlorophenol mineralization[J]. Electrochimica Acta, 2016, 195: 246-256. doi: 10.1016/j.electacta.2016.02.093
[33] ZHANG H, WAN X, LI G, et al. A three-electrode electro-Fenton system supplied by self-generated oxygen with automatic pH-regulation for groundwater remediation[J]. Electrochimica Acta, 2017, 250: 42-48. doi: 10.1016/j.electacta.2017.08.040
[34] ZHAO J, ZHU C, LU J, et al. Electro-catalytic degradation of bisphenol A with modified Co3O4/β-PbO2/Ti electrode[J]. Electrochimica Acta, 2014, 118: 169-175. doi: 10.1016/j.electacta.2013.12.005
[35] YU X, ZHOU M, REN G, et al. A novel dual gas diffusion electrodes system for efficient hydrogen peroxide generation used in electro-Fenton[J]. Chemical Engineering Journal, 2015, 263: 92-100. doi: 10.1016/j.cej.2014.11.053



加载中


Turn off MathJax -->
WeChat 点击查看大图



图( 10)
计量

文章访问数:788
HTML全文浏览数:788
PDF下载数:36
施引文献:0
出版历程

收稿日期:2020-02-11
录用日期:2020-04-04
网络出版日期:2021-01-13
-->刊出日期:2021-01-10




-->








新型电芬顿反应器处理酸性矿山废水中的Sb(Ⅲ)

柴友正1,2,,
秦普丰1,2,,,
高山2,
吴志斌2,
李天佑1,2,
戴之健1,2
通讯作者: 秦普丰,qinpufeng@126.com ;
作者简介: 柴友正(1995—),男,硕士研究生。研究方向:矿山废水与地下水污染控制。E-mail:chaiyouzheng@126.com 1.湖南省灌溉水源水质污染净化技术工程研究中心,长沙 410128
2.湖南农业大学资源环境学院,长沙 410128
收稿日期: 2020-02-11
录用日期: 2020-04-04
网络出版日期: 2021-01-13
关键词: Sb(Ⅲ)/
酸性矿山废水/
电芬顿/
新型反应器/
去除机理
摘要:为了高效地去除酸性矿山废水中的Sb(Ⅲ),采用一种基于电芬顿反应的新型反应器进行处理。探讨了新型反应器各项性能(去除率、能耗、·OH产量)的优势;分别考察了电流强度、pH、板间距、曝气速率、电解质浓度对Sb(Ⅲ)去除效果的影响;使用水杨酸和苯醌对电芬顿体系中Sb(Ⅲ)的去除机理进行了分析;并探究新型电芬顿反应器对实际废水中的Sb(Ⅲ)处理效果。结果表明:与吸附、电氧化、传统电芬顿法相比,新型反应器在Sb(Ⅲ)的处理中更加高效,并且能耗更低,通过阴极旋转能够提高·OH的产量,增强电芬顿反应氧化能力;在电流强度为120 mA,pH为3,板间距为2 cm,曝气速率为90 mL·min?1,电解质浓度为100 mg·L?1的最佳反应条件下,Sb(Ⅲ)废水去除率接近100%;在电芬顿反应体系中,·OH和HO2·能够共同促进Sb(Ⅲ)的去除;通过该反应器处理实际废水,Sb(Ⅲ)去除率能够达到89%。以上结果可为新型电芬顿反应器高效处理含Sb(Ⅲ)的酸性矿山废水提供参考。

English Abstract






--> --> --> 近年来,锑的污染问题日益严重,许多工业过程(如半导体、阻燃剂、合金、催化剂、化工产品等)的生产会向环境中大量的引入锑[1-2],矿山尾矿也是锑污染的主要来源地之一。我国拥有丰富的锑资源,大规模开采的同时也遗留下来大量的废弃尾矿,尾矿中的Sb与Sb化合物随着雨水,地表水浸出,使得矿山排水中含有高浓度的Sb,并通过不断的迁移转化或累积对周围环境和生物造成严重的危害[3]。因此,如何有效地处理含Sb废水一直以来都是各领域所关注的难题。
Sb在水体中常以Sb(Ⅲ)和Sb(Ⅴ)形式存在,其可在不同的pH条件下表现出不同的存在形式[4]。与常规重金属离子不同,Sb在高pH的条件下有着较高的迁移率[5],这一特性使Sb很难通过传统的方法(投加石灰石、白云石)被有效去除。为了解决这一问题,研究人员提出了许多处理锑污染的方法,包括混凝沉淀法[6-7]、膜分离法[8]、微生物法[9]、电化学法[10-11]、离子交换法[12]、吸附法[13-14]等。但是这些方法仍存在操作复杂、工艺成本高、处理浓度低等缺点,无法很好地兼顾对去除效果和二次污染的控制,难以在含锑酸性矿山废水处理中得到广泛推广与应用。据报道[11],Sb(Ⅲ)的毒性的比Sb(Ⅴ)高出10倍以上,因此,将Sb(Ⅲ)转化为Sb(Ⅴ)是实现Sb(Ⅲ)污染控制的一个可行的途径。曹岛等[15]通过H2O2对铜电解液中的Sb(Ⅲ)进行氧化,脱除率可达到68.2%。KONG等[16-17]对黄铁矿(FeS2)在自然酸性环境下发生Fenton反应并有效氧化水体中Sb(Ⅲ)进行了一系列的机理分析与研究。LIU等[11]以FeOCl改性碳纳米管(CNT)滤波器作为功能性阴极,通过流动式电芬顿体系高效地处理300 mL浓度为1 000 μg·L?1的含锑废水,取得了较好的效果。这些研究为我们处理此类废水提供新的方向:通过强氧化性物质(·OH),将Sb(Ⅲ)高效地转化为稳定的高价态,从而降低水体中的毒性,这已成为一种治理酸性矿山废水中Sb(Ⅲ)可行的办法。
本研究设计了一种新型的电芬顿反应器,以酸性矿山废水中的Sb(Ⅲ)为处理目标,考察了各关键参数对去除率的影响,系统地评价了该反应器较传统处理技术的优越性,探讨了其反应机理,并对该反应器在实际废水处理中的应用效果进行了评估,本研究可为含Sb(Ⅲ)酸性矿山废水的处理提供新的解决思路与依据。

本研究以湖南某地锑矿浮选废水为例,废水水质:pH=2.4、98.2~102.26 mg·L?1 Sb(Ⅲ)、0.42 mg·L?1 As、0.55 mg·L?1 Fe、0.24 mg·L?1 Mn、0.08 mg·L?1 Cr、0.16 mg·L?1 Zn、30 mg·L?1 COD、3.98 g·L?1 $ {\rm{S}}{{\rm{O}}_4^{2 - }} $、51 mg·L?1 $ {\rm{C}}{{\rm{O}}_3^{2 - }}$、70 mg·L?1 $ {\rm{P}}{{\rm{O}}_4^{3 - }}$。通过配制模拟含锑废水进行一系列探究。所用试剂(均为分析纯)为酒石酸锑钾(C8H4K2O12Sb2·3H2O,国药)、氯化钾(KCl,国药)、水杨酸(salicylic acid,国药)、苯醌(benzoquinone,国药)、硫酸(H2SO4,国药)、氢氧化钠(NaOH,国药)。实验中所用水均为超纯水(UPH,优普,18.25 MΩ·cm)。

电芬顿反应在有机玻璃(PMMA)材质的圆柱形反应器(D=100 mm, H=150 mm)中进行,实验装置如图1所示。装置阴极由Ti网制成(D=40 mm,H=50 mm),并将活性炭纤维毡(ACF)覆于表面,阳极为Fe电极(10 cm×5 cm),正负极分别通过不锈钢电极夹连接至直流电源(MESTEK DP305)上,通过调节阴极最外端侧到阳极板的距离来控制板间距。配制1 L含100 mg·L?1 Sb(Ⅲ)模拟废水,将阴极浸泡在废水中数小时,直至饱和后取出再用。通入电流开始反应后,通过控制变量法,探究关键参数对去除率的影响,每组实验设置3组平行,在不同的时间段内,提取溶液转移至10 mL取样管中并冷藏。



反应中电流的调控通过直流稳压电源(MASTEK DP305)完成,溶液pH的测定通过pH计(METTLER S220)测定,采用火焰原子吸收法(AA-3800,上海)检测Sb(Ⅲ)和Sb(Ⅴ)的浓度变化。

为反映新型电芬顿反应器的效果和优势,对比了不同工艺对Sb(Ⅲ)的处理效果,即吸附、电氧化、传统电芬顿法(10 cm×5 cm ACF作为阴极)的处理效果(见图2)。由图2(a)可知:在吸附条件下,Sb(Ⅲ)的浓度几乎没有变化;在电氧化条件下,Sb(Ⅲ)的去除率约为58%;传统电芬顿法对Sb(Ⅲ)的去除率可以达到90%;而新型电芬顿反应器中Sb(Ⅲ)的去除率可以达到99.7%左右,并且拥有更高的反应速率。此外,处理Sb(Ⅲ)的能耗如图2(b)所示,新型反应器的能耗远小于前二者。这一结果表明,新型电芬顿反应器能够更高效的氧化Sb(Ⅲ),处理效果较其他工艺更好,与其他高级氧化法相比,处理中主要的消耗为电能,这极大地降低了处理成本。


实验考察了阴极旋转在处理过程中起到的作用,结果如图2(c)所示。可以看出,旋转时Sb(Ⅲ)的去除率明显高于未旋转条件下的去除率。以一定量的水杨酸溶液作为羟自由基捕获剂,分别在波长510 nm下对2种条件的电芬顿反应中产生的2,3-二羟基苯甲酸、2,5-二羟基苯甲酸进行检测[18]。可以看出,在旋转条件下,·OH的生成量高于后者(图2(d))。由此可以合理地推测,阴极旋转时可以起到搅拌的作用,同时增强了溶液中的传质速率[19],促进了·OH的产生。此外,通过旋转阴极,使得溶液中的铁絮体沉淀难以附着在ACF表面,使ACF上能够保留更多产生·OH的活性点位[20],进而提升了电芬顿体系的氧化能力。

实验考察了初始pH对电芬顿反应的效率的影响。当pH为2.5~5时,pH对废水中Sb(Ⅲ)的去除率的影响结果如图3所示。可以看出:当pH=3时,去除率达到最高,当pH为3.5和4时,去除率稍逊于前者,但仍能保持相当的去除率;但当pH>4时,Sb(Ⅲ)的去除率下降。这是由于:在pH偏低时,H+会与H2O2竞争,阻碍·OH的积累(式(1)),此外,H+还会消耗溶解氧形成H2O[21-22],反应见式(2);而较高的pH条件下,Fe(Ⅱ)易发生水解反应(式(3)),这不利于Fe(Ⅱ)/Fe(Ⅲ)的电化学转化,从而影响了·OH的产生,此外,较高的pH条件同样会抑制H2O2的形成[23-24],反应见式(4)。上述结果表明,在含锑矿山废水呈酸性条件下,该工艺具有较宽的pH适用范围,这可在一定程度上节约成本,不需要花费额外的费用对废水pH进行调节。


图4可知,随着初始电流强度(30~360 mA)的上升,Sb(Ⅲ)的去除率呈现先增加后减小的变化趋势。当电流强度为120 mA时(电压为3 V、电流密度为1.91 mA·cm?1),去除率达到99.7%;当施加的电流强度分别增大至240 mA和360 mA时,Sb(Ⅲ)去除率下降(分别为92%和83.5%)。这是由于电芬顿体系的反应速度随着电流强度的上升而上升,但当电流强度过高时,会使电极析氢副反应加剧(式(5)),电流利用效率降低,同时抑制了H2O2在阴极的生成[25-26]。因此,选择电流强度为120 mA,能够最大程度地发挥新型电芬顿反应器的功效。


板间距是决定电芬顿处理效率的重要因素之一。本研究考察了板间距在1~3 cm时对Sb(Ⅲ)的去除率的影响情况,结果如图5所示。由图5可知,当板间距为2 cm时,能够达到对Sb(Ⅲ)最佳去除率。这主要是因为:当板间距过近时,阴阳极上的反应会互相干扰,如Fe(Ⅱ)容易被氧化为Fe(Ⅲ) (式(6)),抑制了Fenton反应的效率,影响·OH的生成[27],此外,被氧化的Sb(Ⅴ)会在阴极被还原为Sb(Ⅲ) (式(7)),这使得去除效果难以达到预期目标。板间距距离较远同样不利于提升处理效率,较远的距离会使极板间电阻增大,阻碍了Fe(Ⅲ)向阴极表面的转移再生[28-29],同时,较远的板间距意味着更大的能耗。因此,最佳板间距确定为2 cm。


在电芬顿反应中,曝气速率能够通过影响H2O2的生成效率进而影响整体体系的反应速率[30]图6反映了不同曝气条件下的Sb(Ⅲ)去除率对比结果。可以看出,在曝气条件下的Sb(Ⅲ)去除率明显高于未曝气条件下的去除率。当曝气速率达到90 mL·min?1时,Sb(Ⅲ)去除率约为未曝气状态的1.3倍,这是由于提升曝气速率能够增加溶液中的溶解氧,有利于H2O2的生成[31-33](式(8))。当曝气速率高于90 mL·min?1时,Sb(Ⅲ)的去除率没有进一步提高,这说明90 mL·min?1的曝气速率可以提供充足的溶解氧。因此,最佳曝气速率选择为90 mL·min?1


电解质能够有效加强溶液中的导电性,提高处理效率。本研究考察了不同电解质浓度在含Sb(Ⅲ)实际废水处理中的去除效果,结果如图7所示。通过增加KCl的浓度,观察到去除率有所提高,当电解质浓度100 mg·L?1时,去除率达到99.7%。这是由于KCl作为电解质时,随着电流效率的提升,·OH的生成效率随之提高。此外,KCl作为电解质时,能够消除其他物质作为电解质时的不利影响,如$ {\rm{S}}{{\rm{O}}_4^{2 - }} $$ {\rm{C}}{{\rm{O}}_3^{2 - }}$的存在可能会与溶液中的Ca2+等反应生成沉淀,导致电极钝化,所需能耗上升[27]。溶液中Cl?的存在可能会在电流催化下产生具有氧化性的次氯酸(HOCl),促进了Sb(Ⅲ)/Sb(Ⅴ)的转化。但这并不意味着电解质浓度越高越好,过量的KCl电解质将对·OH起到捕获作用,会使去除率显著地降低(图7)。


Sb(Ⅲ)初始浓度是评价新型电芬顿反应器处理效率的重要依据。图8为Sb(Ⅲ)初始处理浓度对电芬顿体系中Sb(Ⅲ)去除率的影响。可以看出,当初始浓度低于100 mg·L?1时,Sb(Ⅲ)的去除率更高,并且反应速率更快。而初始浓度较高时,去除率明显下降。这是由于在一定的电流强度下,电芬顿反应中生成·OH的量是恒定的,低浓度条件下,能够快速将Sb(Ⅲ)氧化至Sb(Ⅴ),而在浓度较高的情况下,中间产物的竞争会使得Sb(Ⅲ)的氧化效率有所降低[34-35]。但总的来说,在高浓度条件下,·OH与Sb(Ⅲ)的碰撞概率增加,从而使得Sb(Ⅲ)的绝对去除率上升。



为了探究电芬顿反应对Sb(Ⅲ)的去除机理,设计了一系列的对照实验。通过配制一定量相同浓度的水杨酸(SAL)和苯醌(BQ)溶液,分别投加至溶液中,启动反应,考察Sb(Ⅲ)的去除机理(见图9)。由图9(a)可知,当加入水杨酸作为·OH捕获剂后,Sb(Ⅲ)去除率迅速下降至72.5%。这说明·OH在去除Sb(Ⅲ)的过程中起主要的作用。而除了·OH外,当加入苯醌溶液后,Sb(Ⅲ)去除率下降至90%,这证明过氧化羟自由基HO2·也能对Sb(Ⅲ)/Sb(Ⅴ)的转化起到一定的作用,二者协同作用促进了Sb(Ⅲ)的去除。另外,本研究对阳极的电絮凝作用进行了探讨。在相同浓度的废水中投加0.5 mmol·L?1氯化铁(FeCl3·6H2O),搅拌2 h后,观察到溶液中Sb(Ⅲ)的去除率约为4%,这表明Fe(Ⅲ)在溶液中,除了参与Fenton反应外,还对Sb(Ⅲ)存在一定的凝聚效果。


通过测定废水中Sb类物质浓度随时间的变化,进一步验证Sb(Ⅲ)向Sb(Ⅴ)的转化。如图9(b)所示,反应开始后,Sb(Ⅲ)浓度明显下降,而Sb(Ⅴ)不断上升,这种变化证明了电芬顿体系对Sb(Ⅲ)的氧化能力。在反应终点,总Sb的下降可能是因为一定量的Sb(Ⅴ)在铁絮凝作用下被吸附,以及在阴极表面被还原成Sb。去除过程可以合理地总结为:溶液中的O2在阴极表面还原生成H2O2(式(8)),阳极铁电极氧化产生的Fe(Ⅱ)迅速与H2O2反应产生·OH(式(9)),Fe(Ⅲ)在阴极被还原为Fe(Ⅱ)重新参与Fenton反应,同时会与H2O2反应生成HO2·(式(10)~式(13)),·OH与HO2·协同对Sb(Ⅲ)进行高效氧化(式(14)~式(15)),从而达到对污染物的去除效果(如图9(c)所示)。

为了验证新型电芬顿反应器在实际废水处理中的可行性,本研究对其在模拟废水与实际废水中的去除率进行了对比,结果如图10所示。可以看出,在最佳反应条件下,实际废水中新型电芬顿反应器对Sb(Ⅲ)的去除率能达到89%,去除率的下降可以用实际废水中其他离子之间对·OH和HO2·的竞争来说明,如Fe(Ⅱ)和As(Ⅲ)等。此外,溶液中的$ {\rm{C}}{{\rm{O}}_3^{2 - }}$$ {\rm{P}}{{\rm{O}}_4^{2 - }}$可能在一定程度上对电芬顿体系中Fe(Ⅱ)/Fe(Ⅲ)的循环起到阻碍作用。此结果表明,新型电芬顿反应器在实际废水处理中仍能保持良好的Sb(Ⅲ)去除率,因此,其可以作为一种高效、应用前景广阔的处理酸性矿山废水中Sb(Ⅲ)的技术。



1)以电芬顿反应为基础,设计了一种新型阴极旋转式电芬顿反应器,用来处理酸性矿山废水中的Sb(Ⅲ)。相较于传统的电化学处理方法,新型电芬顿反应器处理效率更高,能耗更低。阴极旋转增大了·OH的产量,提升了Sb(Ⅲ)的去除率。
2)·OH和HO2·能够协同作用,共同提高Sb(Ⅲ)的去除效果。在电流强度为120 mA、pH=3、板间距为2 cm、曝气速率为90 mL·min?1、电解质浓度为100 mg·L?1的最佳反应条件下,废水中Sb(Ⅲ)的去除率能够达到99.7%以上。
3)新型电芬顿反应器在实际废水的处理中能够取得很好的效果,Sb(Ⅲ)去除率达到89%以上。

参考文献 (35)
相关话题/矿山 图片 实验 污染 技术