3.青岛市水质保障与水资源开发利用重点实验室,青岛 266071
1.School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
2.Qingdao Water Group Co. Ltd., Qingdao 266071, China
3.Qingdao Key Laboratory of Water Quality Protection and Water Resources Utilization, Qingdao 266071, China
针对目前市政污泥处理资源化与减量化效率低的问题,利用微好氧预处理技术进行预处理,提高其甲烷产量。利用有机物溶出效率、VSS减量、甲烷产量3项指标对预处理效果进行了评价;研究了不同参数条件下微好氧预处理对市政污泥厌氧消化产甲烷的影响;探讨了微好氧预处理对污泥胞外聚合物的影响。结果表明,微好氧预处理可以促进污泥溶解性有机物释放、提高VSS去除率;在最佳反应条件下(曝气强度0.30 m
、预处理时间12 h),相对于未经过预处理的工况,甲烷产量可提高26.77%;微好氧预处理对剩余污泥活性细胞的影响主要发生在胞外聚合物部分,同时也存在对活性微生物的破解作用。市政污泥经过微好氧预处理后,可有效提升后续中温厌氧消化或高温厌氧消化的甲烷产量。
Aiming at low efficiency of municipal sludge resource reuse and reduction, microaerobic pretreatment was used to improve the methane production from municipal sludge. The pretreatment effect was evaluated by soluble organic dissolved rate, VSS reduction and methane production efficiency. The effects of microaerobic pretreatment on anaerobic digestion of municipal sludge under different conditions and extracellular polymeric substances were studied. The results indicated that microaerobic pretreatment could promote the release of soluble organic matter in municipal sludge and improve the removal efficiency of VSS. Under the optimal reaction conditions: aeration intensity of 0.30 m
, pretreatment time of 12 h, the methane production increased by 26.77% with comparison with the sludge without pretreatment. The effect of microaerobic pretreatment on cells in excess activated sludge mainly occurred on the extracellular polymeric substances(EPS) and the disintegration of microorganisms. Microaerobic pretreatment could cause the significant increase of methane production rate of mesophilic and thermophilic anaerobic digestion.
.
Diagram of experimental device
曝气强度对溶解性有机物及COD溶出率的影响
Effects of aeration intensity on soluble organic matter and solubility of COD
Effects of aeration intensity on methane production in anaerobic digestion of municipal sludge
Effects of aeration intensity on VSS removal
曝气时间对溶解性有机物及COD溶出率的影响
Effects of aeration time on soluble organic matter and solubility of COD
Effects of aeration time on methane production in anaerobic digestion of municipal sludge
中温、高温条件下溶解性有机物及COD溶出率对比
Comparison of soluble organic matter and solubility of COD under mesophilic and thermophilic conditions
中温、高温条件下市政污泥厌氧消化产甲烷量对比
Comparison of methane production by anaerobic digestion of municipal sludge under mesophilic and thermophilic conditions
Change of EPS composition in each layer
[1] | 叶云晖, 张伟. 生态环境部公布2018年度《水污染防治行动计划》重点任务实施情况[EB/OL]. [2019-07-25]. http://www.gov.cn/xinwen/2019-07/25/content_5415071.htm, 2019. |
[2] | 陈思思, 杨殿海, 庞维海, 等. 我国剩余污泥厌氧转化的主要影响因素及影响机制研究进展[J/OL]. 化工进展: 1-14[2019-10-08]. https://doi.org/10.16085/j.issn.1000-6613.2019-1128. |
[3] | 胡维杰. 我国污水处理厂污泥处理处置需关注的若干内容[J]. 给水排水, 2019, 55(3): 35-41. |
[4] | 王磊, 谭学军, 王逸贤, 等. 热水解预处理剩余污泥的有机物分布及厌氧消化特性[J]. 环境工程, 2019, 37(3): 35-39. |
[5] | YAN Y Y, CHEN H L, XU W Y, et al. Enhancement of biochemical methane potential from excess sludge with low organic content by mild thermal pretreatment[J]. Biochemical Engineering Journal, 2013, 70(15): 127-134. |
[6] | 廖足良, 冉小珊, 刘长青, 等. 热水解和超声波预处理对污泥厌氧消化效能的影响研究[J]. 环境工程, 2014, 32(6): 52-56. |
[7] | 张峰, 冉晓珊, 包苏俊, 等. 热水解超声组合预处理对污泥厌氧消化产气潜力的影响研究[J]. 环境污染与防治, 2013, 35(9): 71-74. doi: 10.3969/j.issn.1001-3865.2013.09.015 |
[8] | RUIZ-HERNANDO M, MARTíN-DíAZ J, LABANDA J, et al. Effect of ultrasound, low-temperature thermal and alkali pre-treatments on waste activated sludge rheology, hygienization and methane potential[J]. Water Research, 2014, 61(15): 119-129. |
[9] | 余华平, 黄瑛, 洪锋, 等. 不同预处理方法对脱水污泥厌氧消化的影响[J]. 环境工程学报, 2018, 12(9): 2594-2601. doi: 10.12030/j.cjee.201803102 |
[10] | GERRITSE J, SCHUT F, GOTTSCHAL J C. Mixedchemostat cultures of obligately aerobic and fermentative or methanogenic bacteria grown under oxygen-limiting conditions[J]. FEMS Microbiology Letters, 1990, 66(1): 87-93. |
[11] | KATO S, HARUTA S, CUI Z J. Stable coexistence of five bacterial strains as a cellulosedegrading community[J]. Applied and Environmental Microbiology, 2005, 71(11): 7099-7106. doi: 10.1128/AEM.71.11.7099-7106.2005 |
[12] | GOEL R, MINO T, SATOH H, et al. Effect of electron acceptor conditions on hydrolytic enzyme synthesis in bacterial cultures[J]. Water Research, 1997, 31(10): 2597-2603. doi: 10.1016/S0043-1354(97)00100-0 |
[13] | MSHANDETE A, BJORNSSON L, KIVAISI A K, et al. Enhancement of anaerobic batch digestion of sisalpulp waste by mesophilic aerobic pretreatment[J]. Water Research, 2005, 39(8): 1569-1575. doi: 10.1016/j.watres.2004.11.037 |
[14] | NGUYEN P H L, KURUPARAN P, VISVANATHAN C. Anaerobic digestion of municipal solid waste as a treatment prior to landfill[J]. Bioresource Technology, 2007, 98(2): 380-387. doi: 10.1016/j.biortech.2005.12.018 |
[15] | JENICEK P, CELIS C A, KOUBOVA J, et al. Comparison of microbial activity in anaerobic and microaerobic digesters[J]. Water Science and Technology, 2011, 63(10): 2244-2249. doi: 10.2166/wst.2011.579 |
[16] | RAMOS I, FDZ-POLANCO M. The potential of oxygen to improve the stability of anaerobic reactors during unbalanced conditions: Results from a pilotscale digester treating sewage sludge[J]. Bioresource Technology, 2013, 140(7): 80-85. |
[17] | MONTALVO S, HUILINIR C. Microaerobic pretreatment of sewage sludge: Effect of air flow rate, pretreatment time and temperature on the aerobic process andmethane generation[J]. International Biodeterioration & Biodegradation, 2016, 110(5): 1-7. |
[18] | DUMAS C, PEREZ S, PAUL E, et al. Combined thermophilic aerobic process and conventional anaerobic digestion: Effect on sludge biodegradation and methane production[J]. Bioresource Technology, 2010, 101(8): 2629-2636. doi: 10.1016/j.biortech.2009.10.065 |
[19] | 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. |
[20] | AQUINO S F, STUCKEY D C. Soluble microbial products formation in anaerobic chemostats in the presence of toxic compounds[J]. Water Research, 2003, 38(2): 255-266. |
[21] | SMITH P K, KROHN R I, HERMANSON G T, et al. Measurement of protein using bicinchoninic acid[J]. Analytical Biochemistry, 1985, 150(1): 76-85. doi: 10.1016/0003-2697(85)90442-7 |
[22] | SUN Y, CLINKENBEARD K D, CLARKE C, et al. Pasteurella haemolytica leukotoxin induced apoptosis of bovine lymphocytes involves DNA fragmentation[J]. Veterinary Microbiology, 1999, 65(2): 156-166. |
[23] | 李一兵, 张千, 张彦平, 等. Fenton试剂氧化破解污泥的影响因素研究[J]. 河北工业大学学报, 2017, 46(1): 98-102. |
[24] | 周俊, 周立祥, 黄焕忠. 污泥胞外聚合物的提取方法及其对污泥脱水性能的影响[J]. 环境科学, 2013, 34(7): 2752-2757. |
[25] | 刘翔. 活性污泥和生物膜的胞外聚合物性质及其对污泥性能影响的比较研究[D]. 上海: 复旦大学, 2009. |
[26] | MORGAN J W, FORSTER C F, EVISON L. A comparative study of the nature of biopolymers extracted from anaerobic and activated sludges[J]. Water Research, 1990, 24(6): 743-750. doi: 10.1016/0043-1354(90)90030-A |
[27] | HARIKLIA N, GAVALA, YENAL U, et al. Mesophilic and thermophilic anaerobic digestion of primary and secondary sludge. Effect of pretreatment at elevated temperature[J]. Water Research,, 2003, 37(19): 4561-4572. doi: 10.1016/S0043-1354(03)00401-9 |
[28] | BURGESS J E, PLETSCHKE B I. Hydrolytic enzymes in sewage sludge treatment: A mini-review[J]. Water SA, 2008, 34(3): 343-349. |
[29] | HASEGAWA S, SHIOTA N, KATSURA K, et al. Solubilization of organic sludge by thermophilic aerobic bacteria as a pretreatment for anaerobic digestion[J]. Water Science and Technology, 2001, 41(3): 163-169. |
[30] | LIU X, WANG W, GAO X B, et al. Effect of thermal pretreatment on the physical and chemical properties of municipal biomass waste[J]. Waste Management, 2012, 32(2): 249-255. doi: 10.1016/j.wasman.2011.09.027 |
[31] | JANG H M, CHO H U, PARK S K, et al. Influence of thermophilic aerobic digestion as a sludge pretreatment and solids retention time of mesophilic anaerobic digestion on the methane production, sludge digestion and microbial communities in a sequential digestion process[J]. Water Research, 2014, 48(6): 1-14. |
[32] | WANG Z W, LIU Y, TAY J H. Biodegradability of extracellular polymericsubstances produced by aerobic granules[J]. Applied Microbiology and Biotechnology, 2007, 74(2): 462-466. doi: 10.1007/s00253-006-0686-x |
[33] | MORE T T, YADAV J S S, YAN S, et al. Extracellular polymeric substances of bacteria and their potential environmental applications[J]. Journal of Environmental Management, 2014, 144(1): 1-25. |
[34] | 袁冬琴, 王毅力. 活性污泥胞外聚合物(EPS)的分层组分及其理化性质的变化特征研究[J]. 环境科学, 2012, 33(10): 3522-3528. |
[35] | LI X Y, YANG S F. Influence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludge[J]. Water Research, 2007, 41(5): 1022-1030. doi: 10.1016/j.watres.2006.06.037 |
[36] | WANG H W, DENG H H, MA L M, et al. Influence of operating conditions on extracellular polymeric substances and surface properties of sludge flocs[J]. Carbohydrate Polymers, 2013, 92(1): 510-515. doi: 10.1016/j.carbpol.2012.09.055 |