2.中国地质大学(北京)水资源与环境学院,北京 100083
1.Department of Urban Water Environmental Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
2.College of Water Resources and Environmental Engineering,China University of Geosciences,Beijing 100083,China
运用化学连续提取法(standards-method of measurements and testing,SMT)对北京市3座污水处理厂污泥中的磷进行形态和组成分析,以低温热解、投加酸碱和投加EDTA 3种方式处理污泥,研究磷的溶出规律。结果表明:污泥中的磷主要以无机磷形态存在,占总磷的71.7%~89.3%;非磷灰石是无机磷的主要形态,占50%左右。低温热解时,在50 ℃条件下,污泥总磷的溶出率最高,达50%以上。酸性或碱性条件下,污泥磷溶出效果优于中性条件,pH为4时,污泥的磷溶出效率最高,在40%左右;碱性条件下,污泥中非磷灰石态无机磷会大量溶出。投加EDTA,磷灰石态无机磷的溶出率大于非磷灰石态无机磷。综合以上结果,根据磷的形态设置合理的条件进行污泥磷溶出,有利于提高溶出效率。
In this study, the sludge samples were collected from three sewage treatment plants of Beijing. The standards-method of measurements and testing program (SMT) was used to analyze the phosphorus species and composition in three samples, and the pretreatment methods of thermal hydrolysis, acid/alkali digestion and EDTA addition were used to investigate the release rate of the phosphorus. The results indicated that inorganic phosphorus was the predominant faction, which accounted for 71.7%~89.3% of the total phosphorus, and non-apatite was the main species of inorganic phosphorus, which accounted for about 50%. Thermal hydrolysis pretreatment at 50 ℃ could result in the release of over 50% total phosphorus from the tested sludge samples. The release rate of total phosphorus at acidic or alkaline conditions was higher than that at neutral conditions, the highest release occurred at pH 4 with about 40% total phosphorus. Under alkaline conditions, a large amount of non-apatite inorganic phosphorus could release from the sludge samples. EDTA Addition could lead to a higher release rate of apatite inorganic phosphorus than non-apatite inorganic phosphorus. Reasonable conditions for phosphorus release in combination with phosphorus species were conducive to the increase of phosphorus release rate in sludge samples.
.
Phosphorus fractions in tested sludge samples from three sewage treatment plants
不同温度下3座污水处理厂污泥上清液总磷的浓度
Total phosphorus concentrations in the supernatant of sludge samples collected from three sewage treatment plants at different temperature
不同温度条件下3座污水处理厂污泥上清液磷酸根占总磷的比例
Proportions of phosphate in total phosphorus contained in sludge supernatant of three sewage treatment plants at different temperature
pH对高碑店、肖家河和清河污水处理厂的污泥磷释放效果的影响
Effect of pH on phosphorus release from sludge in Gaobeidian、Xiaojiahe and Qinghe sewage treatment plants
不同EDTA浓度对污泥上清液中的磷酸根及总磷的溶出影响
Effects of different EDTA concentrations on phosphate or total phosphorus release from sludge samples
Concentrations and proportions of different phosphorus species in sludge from three different sewage treatment plants
[1] | SONG Y H, YUAN P, ZHENG B H, et al. Nutrients removal and recovery by crystallization of magnesium ammonium phosphate from synthetic swine wastewater[J]. Chemosphere, 2007, 69(2): 319-324. doi: 10.1016/j.chemosphere.2007.06.001 |
[2] | 郝晓地, 宋鑫. 从污水、污泥、动物粪尿中回收磷: 技术与政策[J]. 北京建筑大学学报, 2016, 32(3): 101-107. doi: 10.3969/j.issn.1004-6011.2016.03.017 |
[3] | 聂开省. 资源与环境约束下的中国磷矿资源需求探析[J]. 低碳技术, 2016, 22(8): 42-43. |
[4] | 胡山鹰. 磷资源产业循环经济[M]. 北京: 新华出版社, 2006. |
[5] | 袁伟哲. 氮磷污染水体的植物修复效果研究[D].长春: 吉林农业大学, 2007. |
[6] | BALME R P. Phosphorus recovery: An overview of potentials and possibilities[J]. Water Science and Technology, 2004, 49(10): 185-190. doi: 10.2166/wst.2004.0640 |
[7] | 胡鹏, 姚义鸣, 胡智弢, 等. 盐碱地区沉积物磷释放特性及影响因素[J]. 环境工程学报, 2013, 7(9): 3327-3332. |
[8] | 戴晓虎, 戴翎翎, 段妮娜. 科技创新为我国污泥绿色化低碳发展提供对策[J]. 建设科技, 2017, 1(1): 48-51. |
[9] | 王超, 刘清伟, 职音, 等. 中国市政污泥中磷的含量与形态分布[J]. 环境科学, 2019, 40(4): 1-16. |
[10] | SAKTAYWIN W, TSUNO H, NAGARE H, et al. Advanced sewage treatment process with excess sludge reduction and phosphorus recovery[J]. Water Resources, 2005, 39(5): 902-910. |
[11] | 沈雪莲, 周振, 任伟超, 等. 城镇污水处理厂污泥中磷的形态分布及生物可利用性分析[J]. 环境工程学报, 2016, 10(3): 1200-1204. doi: 10.12030/j.cjee.20160331 |
[12] | 许春雪, 袁建, 王亚平, 等. 沉积物中磷的赋存形态及磷形态顺序提取分析方法[J]. 岩矿测试, 2011(6): 785-794. doi: 10.3969/j.issn.0254-5357.2011.06.024 |
[13] | 朱梦圆, 朱广伟, 钱君龙, 等. SMT 法插标分析沉积物中磷的地球化学形态[J]. 中国环境科学, 2012, 32(8): 1502-1507. doi: 10.3969/j.issn.1000-6923.2012.08.024 |
[14] | WANG S R, JIN X C, PANG Y, et al. Phosphorus fractions and phosphate sorption characteristics in relation to the sediment compositions of shallow lakes in the middle and lower reaches of Yangtze River region, China[J]. Journal of Colloid and Interface Science, 2005, 289(2): 339-346. doi: 10.1016/j.jcis.2005.03.081 |
[15] | 朱晓芸, 杨红, 高春梅. 磷形态和pH对剩余污泥磷释放的影响[J]. 上海海洋大学学报, 2014, 23(1): 102-107. |
[16] | 宋晓雅. 北京高碑店污水处理厂污泥处理系统研究[D]. 北京: 北京工业大学, 2006. |
[17] | 何玉凤. 热碱处理促进剩余污泥水解的实验研究[D]. 大连: 大连理工大学, 2007. |
[18] | BARRIOS J A, DURAN A, CANO A, et al. Sludge electro oxidation as pretreatment for anaerobic digestion[J]. Published February, 2017, 75(4): 775-781. |
[19] | 尹军, 臧立新, 于海侠, 等.超声与碱预处理低有机质剩余污泥特性分析[D]. 环境工程学报, 2009, 3(1): 179-182. |
[20] | 薛涛, 黄霞, 郝王娟. 剩余污泥热处理过程中磷、氮和有机碳的释放特性[J]. 中国给水排水, 2006, 22(23): 22-25. doi: 10.3321/j.issn:1000-4602.2006.23.006 |
[21] | 程振敏, 魏源送, 刘俊新. 酸碱预处理对常压微波辐射剩余活性污泥磷释放的影响[J]. 环境科学, 2009, 30(4): 1110-1114. doi: 10.3321/j.issn:0250-3301.2009.04.029 |
[22] | 曾凡哲.破解方式对污泥释磷效果的比较研究[D].哈尔滨: 哈尔滨工业大学, 2014. |
[23] | SONZOGNI W C, CHAPRA S C, ARMSTRONG D E, et al. Bioavailability of phosphorus inputs to lakes[J]. Journal of Environmental Quality, 1982, 11(4): 555-563. |
[24] | 胡忻, 陈茂林, 吴云海, 等. 城市污水处理厂污泥化学组分与重金属元素形态分布研究[J]. 农业环境科学学报, 2005, 24(2): 387-391. doi: 10.3321/j.issn:1672-2043.2005.02.040 |
[25] | 宋明阳, 李敏, 袁溪, 等. 污水处理厂污泥磷形态及低温热解-碱解联合处理的释磷效果研究[J]. 环境工程, 2018, 36(1): 112-117. |
[26] | 冯士龙. 城市污水厂污泥中磷的形态分布和释放特性研究[D]. 南京: 河海大学, 2008. |
[27] | DABZAC P, BORDAS F, HULLEBUSCH E V, et al. Extraction of extracellular polymeric substances (EPS) from anaerobic granular sludges: Comparison of chemical and physical extraction protocols[J]. Applied Microbiology & Biotechnology, 2010, 85(5): 1589-1599. |
[28] | GUO X, LIU J, XIAO B. Evaluation of the damage of cell wall and cell membrane for various extracellular polymeric substance extractions of activated sludge[J]. Journal of Biotechnology, 2014, 188(1): 130-135. |
[29] | TAKIGUCHI N, KISHINO M, KURODA A, et al. Effect of mineral elements on phosphorus release from heated sewage sludge[J]. Bioresource Technology, 2007, 98(13): 2533-2537. doi: 10.1016/j.biortech.2006.09.015 |
[30] | 方先金,?张韵. 高碑店污水处理厂处理水资源化再利用的研究[C]//北京市市政工程设计研究总院.北京市市政工程设计研究总院建院45周年论文集: 污水除磷脱氮技术研究与实践. 北京,?2000:?282-286. |
[31] | 黎颖治, 夏北成. 湖泊沉积物内部因素对沉积物-水界面磷交换的影响[J]. 土壤通报, 2006, 37(5): 1017-1021. doi: 10.3321/j.issn:0564-3945.2006.05.041 |
[32] | JENSEN H S, KRISTENSEN P, JEPPESEN E, et al. Iron: phosphorus ratio in surface sediment as an indicator of phosphate release from aerobic sediments in shallow lakes[J]. Hydrobiologia, 1992, 235-236(1): 731-743. doi: 10.1007/BF00026261 |
[33] | HOLDREN G C, ARMSTRONG D E. Factors affecting phosphorus release from intact lake sediment cores[J]. Environmental Science & Technology, 1980, 14(1): 79-87. |
[34] | 刘石磊, 王祺, 樊秉乾, 等. 螯合剂对不同磷源的释磷效应研究[J]. 农业环境科学学报, 2018, 37(9): 1895-1902. doi: 10.11654/jaes.2017-1673 |