Effects of hydrogen pressure and influent flow rate on simultaneous removal of bromate and perchlorate in a hydrogen-based membrane biofilm reactor
LIN Hua1,2,, SUN Jian1, ZHANG Xuehong2, LI Haixiang1,2,, 1.College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China 2.Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541006, China
Abstract:In order to investigate the effects of hydrogen pressure and influent flow rate on simultaneous removal of bromate (${\rm{BrO}}_3^ - $) and perchlorate (${\rm{ClO}}_4^ - $) in a hydrogen-based membrane biofilm reactor (MBfR), the variations of removal efficiency, removal flux, equivalent electron transfer flux and reduction kinetics of ${\rm{BrO}}_3^ - $ and ${\rm{ClO}}_4^ - $ were studied based on the sequential batch short-term experiments. The results show that, when the hydrogen pressure increased from 0.02 MPa to 0.08 MPa, the removal rates of ${\rm{BrO}}_3^ - $ and ${\rm{ClO}}_4^ - $ increased by 12.5% and 17.2%, and the removal fluxes increase by 0.0012 g·(m2·d)?1 and 0.002 g·(m2·d)?1, respectively. However, the removal efficiencies of ${\rm{BrO}}_3^ - $ and ${\rm{ClO}}_4^ - $ did not increase linearly with the continuous increase of hydrogen pressure. When the influent flow rate increased from 1.0 mL·min?1 to 4.0 mL·min?1, the removal fluxes of ${\rm{BrO}}_3^ - $ and ${\rm{ClO}}_4^ - $ increased from 0.005 g·(m2·d)?1 and 0.006 g·(m2·d)?1 to 0.014 g·(m2·d)?1 and 0.017 g·(m2·d)?1, but the removal efficiencies of ${\rm{BrO}}_3^ - $ and ${\rm{ClO}}_4^ - $ decreased from 98.4% and 98.1% to 69.7% and 71.1%, respectively, and these indicated that accelerating the flow rate of the reactor significantly decreased ${\rm{BrO}}_3^ - $ and ${\rm{ClO}}_4^ - $ removal. Based on the study of reduction kinetics, the optimal hydrogen pressure and influent flow rate of MBfR were 0.04~0.06 MPa and 2.0 mL·min?1, respectively. Analysis of the biofilm equivalent electron transfer flux showed that denitrification could more strongly capture electron donor (H2) than ${\rm{BrO}}_3^ - $ or ${\rm{ClO}}_4^ - $ reduction. The results of analysis of reduction orders revealed that the sensitivity of ${\rm{BrO}}_3^ - $ and ${\rm{ClO}}_4^ - $ reduction to influent flow rate was stronger than that to hydrogen pressure. In order to achieve a higher removal of pollutants, the influent flow rate and competitive inhibition of nitrate in water needs to be properly controlled. Key words:hydrogen-based membrane biofilm reactor/ bromate/ perchlorate/ hydrogen pressure/ influent flow rate.
图2MBfR启动驯化第3阶段出水中${\rm{BrO}}_3^ - $、Br?、${\rm{ClO}}_4^ - $和Cl?的浓度变化 Figure2.Change of effluent concentrations of ${\rm{BrO}}_3^ - $, Br?, ${\rm{ClO}}_4^ - $ and Cl? during the third start-up of the MBfR
表1MBfR启动驯化与${\bf{BrO}}_3^ - $和${\bf{ClO}}_4^ - $降解系列实验工况 Table1.Conditions of acclimation stage and series test of ${\bf{BrO}}_3^ - $ and ${\bf{ClO}}_4^ - $ degradation in the MBfR
实验阶段
H2压力/ MPa
进水流速/ (mL·min?1)
进水${\rm{NO}}_3^{-} $-N/ (mg·L?1)
内回流速度/ (mL·min?1)
进水${\rm{BrO}}_3^ - $/ (mg·L?1)
进水${\rm{ClO}}_4^ - $/ (mg·L?1)
启动驯化
0.04
0.5
5
0
0.1
0.1
启动驯化
0.04
1.0
5
8
0.1
0.1
启动驯化
0.04
2.0
5
20
1.0
1.1
降解实验
0.02
2.0
5
20
10
1.1
降解实验
0.04
2.0
5
20
10
1.1
降解实验
0.06
2.0
5
20
10
1.1
降解实验
0.08
2.0
5
20
10
1.1
降解实验
0.04
1.0
5
20
10
1.1
降解实验
0.04
2.0
5
20
10
1.1
降解实验
0.04
3.0
5
20
10
1.1
降解实验
0.04
4.0
5
20
10
1.1
实验阶段
H2压力/ MPa
进水流速/ (mL·min?1)
进水${\rm{NO}}_3^{-} $-N/ (mg·L?1)
内回流速度/ (mL·min?1)
进水${\rm{BrO}}_3^ - $/ (mg·L?1)
进水${\rm{ClO}}_4^ - $/ (mg·L?1)
启动驯化
0.04
0.5
5
0
0.1
0.1
启动驯化
0.04
1.0
5
8
0.1
0.1
启动驯化
0.04
2.0
5
20
1.0
1.1
降解实验
0.02
2.0
5
20
10
1.1
降解实验
0.04
2.0
5
20
10
1.1
降解实验
0.06
2.0
5
20
10
1.1
降解实验
0.08
2.0
5
20
10
1.1
降解实验
0.04
1.0
5
20
10
1.1
降解实验
0.04
2.0
5
20
10
1.1
降解实验
0.04
3.0
5
20
10
1.1
降解实验
0.04
4.0
5
20
10
1.1
下载: 导出CSV 表2不同氢气压力下电子受体的当量电子通量及其分配 Table2.Electron-equivalent fluxes of electron acceptors and their distributions at different hydrogen pressure
H2压力/MPa
当量电子通量/(10?3 个·(m2·d)?1)
通量分配/%
${\rm{BrO}}_3^ - $
${\rm{ClO}}_4^ - $
${\rm{NO}}_3^{-} $-N
总和
${\rm{BrO}}_3^ - $
${\rm{ClO}}_4^ - $
${\rm{NO}}_3^{-} $-N
0.02
0.40
0.75
18.4
19.55
2.0
3.8
94.1
0.04
0.45
0.90
18.4
19.75
2.3
4.6
93.2
0.06
0.46
0.91
18.4
19.77
2.3
4.6
93.1
0.08
0.46
0.91
18.4
19.77
2.3
4.6
93.1
H2压力/MPa
当量电子通量/(10?3 个·(m2·d)?1)
通量分配/%
${\rm{BrO}}_3^ - $
${\rm{ClO}}_4^ - $
${\rm{NO}}_3^{-} $-N
总和
${\rm{BrO}}_3^ - $
${\rm{ClO}}_4^ - $
${\rm{NO}}_3^{-} $-N
0.02
0.40
0.75
18.4
19.55
2.0
3.8
94.1
0.04
0.45
0.90
18.4
19.75
2.3
4.6
93.2
0.06
0.46
0.91
18.4
19.77
2.3
4.6
93.1
0.08
0.46
0.91
18.4
19.77
2.3
4.6
93.1
下载: 导出CSV 表3不同进水流速下电子受体的当量电子通量及其分配 Table3.Electron-equivalent fluxes of electron acceptors and their distributions at different influent flow rate
进水流速/(mL·min?1)
当量电子通量/(10?3 个·(m2·d)?1)
通量分配/%
${\rm{BrO}}_3^ - $
${\rm{ClO}}_4^ - $
${\rm{NO}}_3^{-} $-N
总和
${\rm{BrO}}_3^ - $
${\rm{ClO}}_4^ - $
${\rm{NO}}_3^{-} $-N
1
0.23
0.48
9.2
9.91
2.3
4.8
92.8
2
0.45
0.90
18.4
19.75
2.3
4.6
93.2
3
0.55
1.17
27.6
29.32
1.9
4.0
94.1
4
0.66
1.34
36.7
38.70
1.7
3.5
94.8
进水流速/(mL·min?1)
当量电子通量/(10?3 个·(m2·d)?1)
通量分配/%
${\rm{BrO}}_3^ - $
${\rm{ClO}}_4^ - $
${\rm{NO}}_3^{-} $-N
总和
${\rm{BrO}}_3^ - $
${\rm{ClO}}_4^ - $
${\rm{NO}}_3^{-} $-N
1
0.23
0.48
9.2
9.91
2.3
4.8
92.8
2
0.45
0.90
18.4
19.75
2.3
4.6
93.2
3
0.55
1.17
27.6
29.32
1.9
4.0
94.1
4
0.66
1.34
36.7
38.70
1.7
3.5
94.8
下载: 导出CSV 表4生物膜内${\bf{BrO}}_3^ - $、${\bf{ClO}}_4^ - $和${\bf{NO}}_3^{-} $-N的还原动力学级数 Table4.Reaction orders of ${\bf{BrO}}_3^ - $, ${\bf{ClO}}_4^ - $ and ${\bf{NO}}_3^{-} $-N in biofilm
CHENG H. Improving China’s water resources management for better adaptation to climate change[J]. Climatic Change, 2012, 112(2): 253-282. doi: 10.1007/s10584-011-0042-8
[2]
HU Y, CHENG H. Water pollution during China’ s industrial transition[J]. Environmental Development, 2013, 8(1): 57-73.
[3]
HIJNEN W, VOOGT R, VEENENDAAL H R, et al. Bromate reduction by denitrifying bacteria[J]. Applied & Environmental Microbiology, 1995, 61(1): 239-244.
[4]
MATOS C T, SVETLOZAR V, CRESPO J O G, et al. Simultaneous removal of perchlorate and nitrate from drinking water using the ion exchange membrane bioreactor concept[J]. Water Research, 2006, 40(2): 231-240. doi: 10.1016/j.watres.2005.10.022
[5]
NERENBERG R, RITTMANN B E. Hydrogen-based, hollow-fiber membrane biofilm reactor for reduction of perchlorate and other oxidized contaminants[J]. Water Science & Technology, 2004, 49(11/12): 223-230.
[6]
XIA S, ZHANG Z, ZHONG F, et al. High efficiency removal of 2-chlorophenol from drinking water by a hydrogen-based polyvinyl chloride membrane biofilm reactor[J]. Journal of Hazardous Materials, 2011, 186(2/3): 1367-1373.
[7]
LUO J H, WU M, YUAN Z, et al. Biological bromate reduction driven by methane in a membrane biofilm reactor[J]. Environmental Science & Technology Letters, 2017, 4(12): 562-566.
ZHANG Y, ZHONG F, XIA S, et al. Autohydrogenotrophic denitrification of drinking water using a polyvinyl chloride hollow fiber membrane biofilm reactor[J]. Journal of Hazardous Materials, 2009, 170(1): 203-209. doi: 10.1016/j.jhazmat.2009.04.114
[11]
CHEN X, LIU Y, PENG L, et al. Perchlorate, nitrate, and sulfate reduction in hydrogen-based membrane biofilm reactor: Model-based evaluation[J]. Chemical Engineering Journal, 2017, 316: 82-90. doi: 10.1016/j.cej.2017.01.084
[12]
DEMIREL S, BAYHAN I. Nitrate and bromate removal by autotrophic and heterotrophic denitrification processes: Batch experiments[J]. Journal of Environmental Health Science & Engineering, 2013, 11(1): 27.
[13]
RITTMANN B E, MCCARTY P L. Environmental Biotechnology: Principles and Applications[M]. New York: McGraw-Hill, 2001.
ZHAO H P, ONTIVEROS-VALENCIA A, TANG Y, et al. Using a two-stage hydrogen-based membrane biofilm reactor (MBfR) to achieve complete perchlorate reduction in the presence of nitrate and sulfate[J]. Environmental Science & Technology, 2013, 47(3): 1565-1572.
[16]
LI H, LIN H, XU X, et al. Simultaneous bioreduction of multiple oxidized contaminants using a membrane biofilm reactor[J]. Water Environment Research, 2017, 89(2): 178-185. doi: 10.2175/106143016X14609975746686
[17]
DOWNING L S, NERENBERG R. Kinetics of microbial bromate reduction in a hydrogen-oxidizing, denitrifying biofilm reactor[J]. Biotechnology & Bioengineering, 2010, 98(3): 543-550.
[18]
CHUNG J, RITTMANN B E, WRIGHT W F, et al. Simultaneous bio-reduction of nitrate, perchlorate, selenate, chromate, arsenate, and dibromochloropropane using a hydrogen-based membrane biofilm reactor[J]. Biodegradation, 2007, 18(2): 199-209. doi: 10.1007/s10532-006-9055-9
[19]
XIA S, LI H, ZHANG Z, et al. Bioreduction of para-chloronitrobenzene in drinking water using a continuous stirred hydrogen-based hollow fiber membrane biofilm reactor[J]. Journal of Hazardous Materials, 2011, 192(2): 593-598. doi: 10.1016/j.jhazmat.2011.05.060
[20]
CHUNG J, NERENBERG R, RITTMANN B E. Bioreduction of selenate using a hydrogen-based membrane biofilm reactor[J]. Environmental Science & Technology, 2006, 40(5): 1664-1671.
[21]
CHUNG J, NERENBERG R, RITTMANN B E. Bio-reduction of soluble chromate using a hydrogen-based membrane biofilm reactor[J]. Water Research, 2006, 40(8): 1634-1642. doi: 10.1016/j.watres.2006.01.049
CHUNG J, LI X, RITTMANN B E. Bio-reduction of arsenate using a hydrogen-based membrane biofilm reactor[J]. Chemosphere, 2006, 65(1): 24-34. doi: 10.1016/j.chemosphere.2006.03.018
1.College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China 2.Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541006, China Received Date: 2018-11-18 Accepted Date: 2019-03-29 Available Online: 2019-10-11 Keywords:hydrogen-based membrane biofilm reactor/ bromate/ perchlorate/ hydrogen pressure/ influent flow rate Abstract:In order to investigate the effects of hydrogen pressure and influent flow rate on simultaneous removal of bromate (${\rm{BrO}}_3^ - $) and perchlorate (${\rm{ClO}}_4^ - $) in a hydrogen-based membrane biofilm reactor (MBfR), the variations of removal efficiency, removal flux, equivalent electron transfer flux and reduction kinetics of ${\rm{BrO}}_3^ - $ and ${\rm{ClO}}_4^ - $ were studied based on the sequential batch short-term experiments. The results show that, when the hydrogen pressure increased from 0.02 MPa to 0.08 MPa, the removal rates of ${\rm{BrO}}_3^ - $ and ${\rm{ClO}}_4^ - $ increased by 12.5% and 17.2%, and the removal fluxes increase by 0.0012 g·(m2·d)?1 and 0.002 g·(m2·d)?1, respectively. However, the removal efficiencies of ${\rm{BrO}}_3^ - $ and ${\rm{ClO}}_4^ - $ did not increase linearly with the continuous increase of hydrogen pressure. When the influent flow rate increased from 1.0 mL·min?1 to 4.0 mL·min?1, the removal fluxes of ${\rm{BrO}}_3^ - $ and ${\rm{ClO}}_4^ - $ increased from 0.005 g·(m2·d)?1 and 0.006 g·(m2·d)?1 to 0.014 g·(m2·d)?1 and 0.017 g·(m2·d)?1, but the removal efficiencies of ${\rm{BrO}}_3^ - $ and ${\rm{ClO}}_4^ - $ decreased from 98.4% and 98.1% to 69.7% and 71.1%, respectively, and these indicated that accelerating the flow rate of the reactor significantly decreased ${\rm{BrO}}_3^ - $ and ${\rm{ClO}}_4^ - $ removal. Based on the study of reduction kinetics, the optimal hydrogen pressure and influent flow rate of MBfR were 0.04~0.06 MPa and 2.0 mL·min?1, respectively. Analysis of the biofilm equivalent electron transfer flux showed that denitrification could more strongly capture electron donor (H2) than ${\rm{BrO}}_3^ - $ or ${\rm{ClO}}_4^ - $ reduction. The results of analysis of reduction orders revealed that the sensitivity of ${\rm{BrO}}_3^ - $ and ${\rm{ClO}}_4^ - $ reduction to influent flow rate was stronger than that to hydrogen pressure. In order to achieve a higher removal of pollutants, the influent flow rate and competitive inhibition of nitrate in water needs to be properly controlled.