2.东莞市环境科学研究所,东莞 523009
1.School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
2.Dongguan Institute of Environmental Science, Dongguan 523009, China
针对水性涂料使用过程产生的乙二醇乙醚有机废气,通过膜生物反应器进行处理,考察了进气浓度、停留时间、液体喷淋量以及循环液pH对净化性能的影响;研究了膜生物反应器降解乙二醇乙醚废气动力学;采用16S rRNA、宏基因组测序技术对微生物群落结构及功能基因进行了分析。结果表明,适宜的运行条件为停留时间10 s,循环液pH 7.60,喷淋密度1.2 m
。膜生物反应器能够高效降解乙二醇乙醚有机废气,去除率可达99.6%,本研究为处理水性涂料产生的醇醚类有机废气提供了参考。
In this study, membrane biofilm reactor (MBfR) was used to treat waste gases containing 2-ethoxyethanol emitted from water-based painting works. The effects of operating parameters such as inlet concentration, residence time, liquid spray density and pH of circulating liquid on the purification performance of MBfR were investigated, as well as the degradation kinetics of 2-ethoxyethanol. The 16S rRNA and macronomic sequencing technologies were used to analyze the structure and functional genes of microbial community. The results show that the optimal residence time, pH of circulating liquid and spray density were 10 s, 7.6 and 1.2 m
, respectively. The maximum reaction rate of 2-ethoxyethanol was 666.67 g·(m
. The increase of inlet load affects to the shift of the microbial community structure in MBfR. The predominant genera changed from
at 145 d. The experimental results show that MBfR could effectively degrade 2-ethoxyethanol with the removal efficiency up to 99.6%. It provides reference for treating alcohol-ethers waste gas produced by water-based painting.
.
膜生物反应器处理乙二醇乙醚废气的实验流程图
Flow chart of membrane biofilm reactor treating 2-ethoxyethanol
Stable operation curve with membrane biofilm reactor and operation curve of inlet and outlet gas concentrations
进气浓度和停留时间对乙二醇乙醚去除率的影响
Influence of inlet concentrations and residence time on 2-ethoxyethanol removal
循环液喷淋密度和pH对乙二醇乙醚去除率影响
Influence of liquid spraying density and pH of circulating liquid on 2-ethoxyethanol removal
Relative abundance of microorganism species at the phylum and genus level
Major functional genes for 2-ethoxyethanol metabolism
[1] | ZHEN Y H, MENG Z L, HONG W, et al. Characteristics of atmospheric volatile organic compounds (VOCs) at a mountainous forest site and two urban sites in the southeast of China[J]. Science of the Total Environment, 2019, 657: 1491-1500. doi: 10.1016/j.scitotenv.2018.12.132 |
[2] | ZHUANG M Z, QING E S, JUN Y Z, et al. Sector-based VOCs emission factors and source profiles for the surface coating industry in the Pearl River Delta region of China[J]. Science of the Total Environment, 2017, 583: 19-28. doi: 10.1016/j.scitotenv.2016.12.172 |
[3] | 张俊刚, 王跃思, 王珊, 等. 京津地区大气中非甲烷烃(NMHCs)质量浓度水平和反应活性研究[J]. 环境科学研究, 2008, 21(5): 158-162. |
[4] | 吴方堃, 王跃思, 安俊琳, 等. 北京奥运时段VOCs浓度变化、臭氧产生潜势及来源分析研究[J]. 环境科学, 2010, 31(1): 10-16. doi: 10.3969/j.issn.1007-0370.2010.01.005 |
[5] | 魏巍, 王书肖, 郝吉明. 中国涂料应用过程挥发性有机物的排放计算及未来发展趋势预测[J]. 环境科学, 2009, 30(10): 2809-2815. doi: 10.3321/j.issn:0250-3301.2009.10.001 |
[6] | RUIZA P, MUMTAZ M, GOMBAR V, et al. Assessing the toxic effects of ethylene glycol ethers using quantitative structure toxicity relationship models[J]. Toxicology and Applied Pharmacology, 2011, 254(2): 198-205. doi: 10.1016/j.taap.2010.10.024 |
[7] | ZHAO H P, STEVEN V G, TANG Y N, et al. Interactions between perchlorate and nitrate reductions in the biofilm of a hydrogen-based membrane biofilm reactor[J]. Environmental Science and Technology, 2011, 45: 10155-10162. doi: 10.1021/es202569b |
[8] | KUMAR A, DEWLUF J, HERMAN V L, et al. Membrane-based biological waste gas treatment[J]. Chemical Engineering Journal, 2008, 136(2/3): 82-91. |
[9] | 修光利, 张晓峰, 赵康, 等. 中空纤维膜生物反应器处理二甲苯废气[J]. 环境工程学报, 2010, 4(10): 2287-2292. |
[10] | 徐孟孟, 陈效, 蒋轶锋, 等. 滤袋式膜生物反应器净化二甲苯[J]. 环境工程学报, 2016, 10(1): 257-261. doi: 10.12030/j.cjee.20160141 |
[11] | VOLCKAERT D, HEYNDERICKX P M, LANGENHOVE H V, et al. Performance of a composite membrane bioreactor for the removal of ethyl acetate from waste air[J]. Bioresource Technology, 2011, 102(19): 8893-8898. doi: 10.1016/j.biortech.2011.06.064 |
[12] | KUMAR A, DEWLUF J, VERCRUYSSEN A, et al. Performance of a composite membrane bioreactor treating toluene vapors: Inocula selection, reactor performance and behavior under transient conditions[J]. Bioresource Technology, 2009, 100(8): 2381-2387. doi: 10.1016/j.biortech.2008.11.004 |
[13] | 陈蓉, 曹明福, 王永忠, 等. 膜生物反应器处理甲苯废气的降解特性及传质过程强化[J]. 环境工程学报, 2012, 6(1): 253-257. |
[14] | KIM D J, KIM H. Degradation of toluene vapor in a hydrophobic polyethylene hollow fiber membrane bioreactor with Pseudomonas putida[J]. Process Biochemistry, 2005, 40(6): 2015-2020. doi: 10.1016/j.procbio.2004.04.018 |
[15] | 孙珮石, 王洁, 孙悦, 等. 吸附-生物膜理论对生物法净化气态污染物的研究[J]. 武汉理工大学学报, 2007, 29(10): 42-46. |
[16] | MORRAL E, LAO C, GABRIEL D, et al. Capillary membrane bioreactor for abatement of low solublecompounds in waste gas[J]. Journal of Chemical Technology and Biotechnology, 2018, 93(2): 548-556. doi: 10.1002/jctb.2018.93.issue-2 |
[17] | 陈波, 张耀斌, 吴丹, 等. 生物滴滤法去除低浓度苯乙烯[J]. 环境工程学报, 2010, 4(3): 644-648. |
[18] | 叶杞宏, 魏在山, 肖盼, 等. 膜生物反应器处理甲苯性能及机制[J]. 环境科学, 2012, 33(8): 2558-2562. |
[19] | KUMAR A, DEWULF J, LUVSANJAMBA M, et al. Continuousoperation of membrane bioreactor treating toluene vapors by Burkholderia vietnamiensis G4[J]. Chemical Engineering Journal, 2008, 140: 193-200. doi: 10.1016/j.cej.2007.09.039 |
[20] | 刘建伟, 黄力华, 马文林. 生物滴滤-生物过滤组合工艺处理汽车喷漆废气中试研究[J]. 环境工程学报, 2011, 5(4): 871-875. |
[21] | MANAN F Y A, ATTAN N, ZAKARI A, et al. Enzymatic esterification of eugenol and benzoic acid by a novel chitosanchitin nanowhiskers supported Rhizomucor miehei lipase: Process optimization and kinetic assessments[J]. Enzyme and Microbial Technology, 2018, 108: 42-52. doi: 10.1016/j.enzmictec.2017.09.004 |
[22] | YU Y Y, YIN H, PENG H, et al. Biodegradation of decabromodiphenyl ether (BDE-209) using a novel microbial consortium GY1: Cells viability, pathway, toxicity assessment, and microbial function prediction[J]. Science of the Total Environment, 2019, 668: 958-965. doi: 10.1016/j.scitotenv.2019.03.078 |
[23] | HAO W, GUO C Y, YIN Z H, et al. Performance and bacterial diversity of biotrickling filters filled with conductive packing material for the treatment of toluene[J]. Bioresource Technology, 2018, 257: 201-209. doi: 10.1016/j.biortech.2018.02.108 |
[24] | PEI L X, YANG W, CHENG N N, et al. Evaluation on the removal performance of dichloromethane and toluene from waste gases using an airlift packing reactor[J]. Journal of Hazardous Materials, 2019, 366: 105-113. doi: 10.1016/j.jhazmat.2018.11.081 |
[25] | MICHALE H. Biodegradation of gasoline ether oxygenates[J]. Bioresource Technology, 2013, 24: 443-450. |
[26] | ZHANG Y, LIU J, WEI D, et al. Research on pressure drop solution and pilot-scale application of biotrickling filter for the treatment of butan-2-yl ethanoate[J]. Process Biochemistry, 2019, 79: 118-126. doi: 10.1016/j.procbio.2018.12.008 |
[27] | MA Q, QU Y Y, SHEN W L, et al. Bacterial community compositions of coking wastewater treatment plants in steel industry revealed by Illumina high-throughput sequencing[J]. Bioresource Technology, 2015, 179: 436-443. doi: 10.1016/j.biortech.2014.12.041 |
[28] | HOLM N B, NOBLE C, LINNET K, et al. JWH-018 v-OH, a shared hydroxy metabolite of the two synthetic cannabinoids JWH-018 and AM-2201, undergoes oxidation by alcohol dehydrogenase and aldehyde dehydrogenase enzymes in vitro forming the carboxylic acid metabolite[J]. Toxicology Letters, 2016, 259: 35-43. doi: 10.1016/j.toxlet.2016.07.007 |
[29] | PEREIRA B, LI Z J, MEY M D, et al. Efficient utilization of pentoses for bioproduction of the renewable two-carbon compounds ethylene glycol and glycolate[J]. Metabolic Engineering, 2016, 34: 80-87. doi: 10.1016/j.ymben.2015.12.004 |
[30] | SUNG C K, KIM S M. Taraxerone enhances alcohol oxidation via increases of alcohol dehyderogenase (ADH) and acetaldehyde dehydrogenase (ALDH) activities and gene expressions[J]. Food and Chemical Toxicology, 2012, 50: 2508-2514. doi: 10.1016/j.fct.2012.04.031 |
[31] | PFEEFER F, SCHACHT S, KLEIN J, et al. Degradation of diphenylether by Pseudomonas cepacia[J]. Archives Microbiology, 1989, 152(6): 515-519. doi: 10.1007/BF00425479 |