北京工业大学,水质科学与水环境恢复工程北京市重点实验室,北京 100124
Key Laboratory of Beijing Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
为实现硫酸盐还原菌(SRB)批量富集培养与包埋技术的工业化应用,采用纤维丝挂膜方式进行SRB的批量富集培养,以高通量测序方法分析SRB培养前后微生物种群变化,并采用生物包埋技术对富集后的厌氧污泥进行包埋;研究了SRB纤维丝填料、包埋填料活性恢复过程及对高浓度硫酸盐的去除情况;探讨了饥饿环境对于该包埋填料的影响。结果表明:采用间歇运行的小空间厌氧移动床进行SRB的培养,历时50 d,硫酸盐去除率最终稳定在80%以上;富集后的硫酸盐还原功能菌
;采用聚乙烯醇(PVA)制作了SRB生物活性包埋填料,在包埋填料填充率为20%情况下,包埋填料对硫酸盐的去除效率最高可达91.96%;经15 d的饥饿环境后,对SRB包埋填料进行短期恢复,即可实现重复利用。该包埋填料具有良好的硫酸盐还原性能和恢复性能,为其工业化应用提供技术参考。
In order to realize industrialized application of batch enrichment culture and embedding technology of sulfate reducing bacteria (SRB), the batch enrichment culture of SRB was carried out by filament membrane method. The changes of microbial population before and after SRB culture were analyzed by high throughput sequencing method, and the enriched anaerobic sludge was embedded by biological embedding technology. The SRB fibrous filler, recovery process of embedded filler and high-concentration sulfate removal were studied. The effect of starvation environment on the embedded filler was also discussed. The results showed that SRB culture was conducted in a small space anaerobic moving bed with intermittent operation, the sulfate removal rate finally maintained above 80% after 50 days. After enrichment, the proportion of sulfate-reducing functional bacteria
increased from 36.06% to 58.68%, and the reduction rate increased from 49.32 mg·(L·h)
. PVA (polyvinyl alcohol) was used to prepare the embedded SRB bioactive filler, and its filling rate with 20% could lead to the highest sulfate removal efficiency up to 91.96%. After 15 days of starvation environment, short-term recovery of embedded SRB filler could be recycled. Good sulfate reduction performance and recovery performance of the embedded filler provides theoretical support for its industrial application.
.
Schematic diagram of sludge enrichment and culture device
Actual picture of embedding filler and 500 mL shake flask
concentration of initially recovered fibrous biological filler
Changes in COD concentration of initially recovered fibrous biological filler
Distribution of microbial population in sludge before and after enrichment culture
Changes of COD concentration after recovery of embedding filler activity
concentration after recovery of embedding filler activity
concentration in the secondary recovery of fibrous biological filler
[1] | 杨群, 宁平, 陈芳媛, 等. 矿山酸性废水治理技术现状及进展[J]. 金属矿山, 2009(1): 131-134. doi: 10.3321/j.issn:1001-1250.2009.01.037 |
[2] | 王磊, 李泽琴, 姜磊. 酸性矿山废水的危害与防治对策研究[J]. 环境科学与管理, 2009, 34(10): 82-84. doi: 10.3969/j.issn.1673-1212.2009.10.020 |
[3] | KLONOWSKA A, CLARK M E, THIEMAN S B, et al. Hexavalent chromium reduction in Desulfovibrio vulgaris hilden borough causes transitory inhibition of sulfate reduction and cell growth[J]. Applied Microbiology and Biotechnology, 2008, 78(6): 1007-1016. doi: 10.1007/s00253-008-1381-x |
[4] | 李建军, 叶广运, 陈进林, 等. 一株硫酸盐还原菌的分离鉴定和系统发育分析[J]. 微生物学通报, 2009, 36(10): 1476-1482. |
[5] | 王正辉. 两相厌氧工艺处理高浓度硫酸盐有机废水的研究[D]. 南昌: 南昌大学, 2008. |
[6] | ELKE G, WERNER H, CHRISTIAN M. Biological sulfate removal from tannery wastewater in a two-stage anaerobic treatment[J]. Water Research, 1996, 30(9): 2072-2078. doi: 10.1016/0043-1354(96)00332-6 |
[7] | HALLBERG K. B, JOHNSON D B. Biological manganese removal from acid mine drainage in constructed wetlands and prototype bioreactors[J]. Science of the Total Environment, 2005, 338(1): 115-124. |
[8] | GONCALVES M M M, DA COSTA A C A, LEITE S G F, et al. Heavy metal removal from synthetic wastewaters in an anaerobic bioreactor using stillage from ethanol distilleries as a carbon source[J]. Chemosphere, 2007, 69(11): 1815-1820. doi: 10.1016/j.chemosphere.2007.05.074 |
[9] | CRAIG A M, O'SULLIVAN A D, MILKE M W, et al. Sulfate and metal removal in bioreactors treating acid mine drainage dominated with iron and aluminum[J]. Water Research, 2008, 43(4): 961-970. |
[10] | OZVERDI A, ERDEM M. Cu2+, Cd2+ and Pb2+ adsorption from aqueous solutions by pyrite and synthetic iron sulphide[J]. Journal of Hazardous Materials, 2006, 137(1): 626-632. doi: 10.1016/j.jhazmat.2006.02.051 |
[11] | FU F L, WANG Q. Removal of heavy metal ions from wastewaters: A review[J]. Journal of Environmental Management, 2011, 92(3): 407-418. doi: 10.1016/j.jenvman.2010.11.011 |
[12] | 张秀霞, 秦丽姣, 黄聪聪, 等. 微生物固定化载体的选择及其性能[J]. 化工进展, 2011, 30(12): 2781-2786. |
[13] | 林洁松. 内聚甲醇固定化硫酸盐还原菌小球去除硫酸盐和铬[J]. 工业催化, 2016, 24(10): 77-80. doi: 10.3969/j.issn.1008-1143.2016.10.014 |
[14] | 胡希佳, 陈伟, 陶慕翔, 等. 硫酸盐还原菌固定化填料滤池对硫酸盐的去除[J]. 中国给水排水, 2015, 31(11): 23-26. |
[15] | 彭永臻. SBR法的五大优点[J]. 中国给水排水, 1993, 9(2): 29-31. doi: 10.3321/j.issn:1000-4602.1993.02.020 |
[16] | 焦迪, 李进, 李娟, 等. 硫酸盐还原菌在中水中的分离及生长特性研究[J]. 环境科学与技术, 2010, 33(10): 64-67. |
[17] | 杨宏, 陈伟, 谭科艳, 等. 利用小空间厌氧移动床还原硫酸盐的实验研究[J]. 北京工业大学学报, 2016, 42(7): 1102-1107. |
[18] | VAN DE GRAAF A A. Autotrophic growth of anaerobic ammonium- oxidizing micro-organisms in a fluidized bed reactor[J]. Microbiology, 1996, 142(8): 2187-2196. doi: 10.1099/13500872-142-8-2187 |
[19] | 陈伟. 生物法处理废水中硫酸盐的实验研究[D]. 北京: 北京工业大学, 2015. |
[20] | 郑强. 生态因子对硫酸盐还原菌生长的影响[J]. 中国资源综合利用, 2009, 27(2): 25-27. doi: 10.3969/j.issn.1008-9500.2009.02.009 |
[21] | 管清坤. PVA凝胶内基质扩散系数测定及其传质性能的优化[J]. 环境工程学报, 2017, 11(3): 1375-1382. |
[22] | ZHANG S, WANG Y, HE W, et al. Linking nitrifying biofilm characteristics and nitrification performance in moving-bed biofilm reactors for polluted raw water pretreatment[J]. Bioresource Technology, 2013, 146: 416-425. doi: 10.1016/j.biortech.2013.07.056 |
[23] | HUANG W, WANG W, SHI W, et al. Use low direct current electric field to augment nitrification and structural stability of aerobic granular sludge when treating low COD/NH4+-N wastewater[J]. Bioresource Technology, 2014, 171: 139-144. doi: 10.1016/j.biortech.2014.08.043 |
[24] | YAO C. Application of magnetic enhanced bio-effect on nitrification: A comparative study of magnetic and non-magnetic carriers[J]. Water Science & Technology, 2013, 67(6): 1280-1287. |
[25] | DONG Y, ZHANG Y, TU B, et al. Immobilization of ammonia-oxidizing bacteria by calcium alginate[J]. Ecological Engineering, 2014, 73: 809-814. doi: 10.1016/j.ecoleng.2014.09.020 |
[26] | 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. |
[27] | 赵宇华, 刘学东. 硫酸盐还原菌及其影响因子[J]. 环境污染与防治, 1997, 19(5): 41-43. |
[28] | 王爱杰, 任南琪, 刘伟, 等. 产酸脱硫反应器中SRB种群的功能与地位[J]. 中国环境科学, 2001, 21(2): 119-123. doi: 10.3321/j.issn:1000-6923.2001.02.007 |
[29] | 任南琪, 王爱杰, 赵阳国. 废水厌氧处理硫酸盐还原菌生态学[M]. 北京: 科学出版社, 2009. |
[30] | 沈平, 范秀荣, 李广武. 微生物学实验[M]. 北京: 高等教育出版社, 1999. |
[31] | 王爱杰, 任南琪, 杜大仲, 等. 硫酸盐还原过程中乙酸型代谢方式的形成及其稳定性[J]. 环境科学, 2004, 25(2): 73-76. doi: 10.3321/j.issn:0250-3301.2004.02.015 |
[32] | VIKAS U. Interactions among sulfate reducers, acetogens, and methanogens in anaerobic propionate systems[J]. Water Environment Research, 1995, 67(3): 330-339. doi: 10.2175/106143095X131556 |
[33] | 苏冰琴, 李亚新. 硫酸盐还原菌厌氧颗粒污泥的形成条件[J]. 化工环保, 2006, 26(1): 26-30. doi: 10.3969/j.issn.1006-1878.2006.01.007 |
[34] | 杨宏, 徐富, 孟琛, 等. 包埋活性污泥反硝化性能的快速提高及群落分析[J]. 环境科学, 2018, 39(10): 4661-4669. |